Calcified Tissue International

, Volume 85, Issue 2, pp 146–157

Does Exercise Modify the Effects of Zoledronic Acid on Bone Mass, Microarchitecture, Biomechanics, and Turnover in Ovariectomized Rats?

  • E. Lespessailles
  • C. Jaffré
  • H. Beaupied
  • P. Nanyan
  • E. Dolléans
  • C. L. Benhamou
  • D. Courteix


Regular activity has effects on bone size, shape, and density, resulting in an increase in mechanical strength. The mechanism of action that underlies this improvement in bone strength is mainly linked to an increase in bone formation. Zoledronic acid (Z), in contrast, may prevent bone strength changes in ovariectomized (OVX) rodents by its potent antiresorptive effects. Based on these assumptions we hypothesized that combined effects of exercise (E) and Z may produce higher benefits on bone changes resulting from estrogen deficiency than either intervention alone. At 6 months of age, 60 female Wistar rats were OVX or sham operated (SH) and divided into five groups: SH, OVX, OVX-E, OVX-Z, and OVX-ZE. OVX rats were treated with a single IV injection of Z (20 μg/kg) or vehicle and submitted or not to treadmill exercise (15 m/min, 60 min/day, 5 days/week) for 12 weeks. Whole-body BMD and bone turnover markers were analyzed longitudinally. At sacrifice, femurs were removed. BMD by DXA, three-point bending test, and μCT were performed to study biomechanical and trabecular structure parameters, respectively. After 12 weeks, bone volume fraction decreased in OVX rats, whereas bone turnover rate, trabecular spacing, and structure model index increased compared with those in the SH group (P < 0.05). Zoledronic acid prevented the ovariectomy-induced trabecular bone loss and its subsequent trabecular microarchitectural deterioration. Treadmill exercise running was shown to preserve the bone strength and to induce bone turnover changes in favor of bone formation. However, the combined effects of zoledronic acid and running exercise applied simultaneously did not produce any synergetic or additive effects.


Zoledronic acid Treadmill exercise Ovariectomized rats Trabecular microarchitecture Bone strength 


  1. 1.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733PubMedCrossRefGoogle Scholar
  2. 2.
    Boonen S (2007) Bisphosphonate efficacy and clinical trials for postmenopausal osteoporosis: similarities and differences. Bone 40:S26–S31CrossRefGoogle Scholar
  3. 3.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cayley JA, Cosman F, Lakatos P, Chung Leung P, Man Z, Mautalen C, Mesenbrick P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Fink Eriksen E, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822PubMedCrossRefGoogle Scholar
  4. 4.
    Hugues DE, Wright KR, Ui HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487Google Scholar
  5. 5.
    Walsh MC, Hunter GR, Livingstone MB (2006) Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int 17(1):61–67PubMedCrossRefGoogle Scholar
  6. 6.
    Wallace BA, Cummings RG (2000) Systematic review of randomized trials pf the effect pf exercise on bone mass in pre-and postmenopausal women. Calcif Tissue Int 67:10–18PubMedCrossRefGoogle Scholar
  7. 7.
    Bonaiuti D et al (2003) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 3:CD000333 ReviewGoogle Scholar
  8. 8.
    National Osteoporosis Foundation (2008) Clinician’s guide to prevention and treatment of osteoporosis. NOF, Washington, DCGoogle Scholar
  9. 9.
    National Osteoporosis Foundation (2004) Bone health and osteoporosis: a report of the surgeon general. NOF, Washington, DCGoogle Scholar
  10. 10.
    Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(8):704–706PubMedCrossRefGoogle Scholar
  11. 11.
    Lespessailles E, Prouteau S (2006) Is there a synergy between physical exercise and drug therapies for osteoporosis? Clin Exp Rheumatol 24:191–195PubMedGoogle Scholar
  12. 12.
    Delmas PD, Vergnaud P, Arlot ME, Pastoureau P, Meunier PJ, Nilssen MJL (1995) The anabolic effect of human PTH (1–34) on bone formation is blunted when bone resorption is inhibited by the bisphosphonate tiludronate—Is activated resorption a prerequisite for the in vivo effect of PTH on formation in a remodelling system? Bone 16:603–610PubMedCrossRefGoogle Scholar
  13. 13.
    Gasser JA, Kneissel M, Thomsen JS, Mosekilde L (2000) PTH and interactions with bisphosphonates. J Musculoskel Neuron Interact 1:53–56Google Scholar
  14. 14.
    Fuchs RK, Shea M, Durski SL, Winters-Stone KM, Widrick J, Snow CM (2007) Individual and combined effects of exercise and alendronate on bone mass and strength in ovariectomized rats. Bone 41:290–296PubMedCrossRefGoogle Scholar
  15. 15.
    Tamaki H, Akamine T, Kurata H, Sakou T (1998) Effects of exercise training and etidronate treatment on bone mineral density and trabecular bone in ovariectomized rats. Bone 23:147–153PubMedCrossRefGoogle Scholar
  16. 16.
    Wronski TJ, Schenck PA, Cintron M, Walsh CC (1987) Effect of body weight on osteopenia in ovariectomized rats. Calcif Tissue 40:155–159CrossRefGoogle Scholar
  17. 17.
    Gasser JA, Green JR (2002) Long-term protective effect of a single IV injection of zoledronic acid on cancellous bone structure and cortical bone in ovariectomized rats. Bone 30(Suppl 3):41SGoogle Scholar
  18. 18.
    Eastell R, Robins SP, Colwell T, Assiri AM, Riggs BL, Russell RG (1993) Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporos Int 3:255–260PubMedCrossRefGoogle Scholar
  19. 19.
    Pastoureau P, Chomel A, Bonnet J (1995) Specific evaluation of localized bone mass and bone loss in the rat using dual-energy X-ray absorptiometry subrregional analysis. Osteoporos Int 5:143–149PubMedCrossRefGoogle Scholar
  20. 20.
    Muller R, Van Campenhout H, Van Damme B, Van der Perre G, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66PubMedCrossRefGoogle Scholar
  21. 21.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm ACM SIGGRAPH 21:1249–1252Google Scholar
  22. 22.
    Hildebrand T, Ruegsegger P (1997) A new method for the model independent assessment of thickness in three dimensional images. J Microsc 185:67–75CrossRefGoogle Scholar
  23. 23.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  24. 24.
    Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Meth Biomech Biomed Eng 1:15–23CrossRefGoogle Scholar
  25. 25.
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor:a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330PubMedCrossRefGoogle Scholar
  26. 26.
    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608PubMedCrossRefGoogle Scholar
  27. 27.
    Neter J, Wasserman W, Ahitmore GA (1982) Applied statistics. Allyn and Bacon, Boston, pp 544–572Google Scholar
  28. 28.
    Yao W, Cheng Z, Koester KJ, Ager JW, Balooch M, Pham A, Chefo S, Busse C, Ritchie R, Lane NE (2007) The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone 41:804–812PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JI, Kim HW, Rhee WI, Park JH, Lim SH, Im S, Ko YJ (2006) The beneficial effect of intravenous zoledronic acid therapy following an acute stroke in rats. Bone 39:377–382PubMedCrossRefGoogle Scholar
  30. 30.
    Browers JEM, Lambers FM, Gasser JA, van Rietbergen B, Huiskes R (2008) Bone degeneration and recovery after early and late bisphosphonate treatment of ovariectomized Wistar rats assessed by in vivo micro-computed tomography. Calcif Tissue Int 82:202–211CrossRefGoogle Scholar
  31. 31.
    Gasser JA, Ingold P, Venturiere A, Shen V, Green JR (2008) Long-term protective effects of zoledronic acid on cancellous and cortical bone in ovariectomized rat. J Bone Miner Res 23:544–551PubMedCrossRefGoogle Scholar
  32. 32.
    Bonnet N, Laroche N, Beaupied H, Vico L, Dolleans E, Benhamou CL, Courteix D (2007) Doping dose of salbutamol and exercise training: impact on the skeleton of ovariectomized rats. J Appl Physiol 103:524–533PubMedCrossRefGoogle Scholar
  33. 33.
    Honda A, Umemura Y, Nagasawa S (2001) Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res 16:1688–1693PubMedCrossRefGoogle Scholar
  34. 34.
    Adami S, Gatti D, Braga V, Bianchini V, Rossini M (1999) Site-specific effects of strength training on bone structure and geometry of ultradistal radius in post-menopausal women. J Bone Miner Res 14:120–124PubMedCrossRefGoogle Scholar
  35. 35.
    Jarvinen TLN, Kannus P, Sievanen H, Jolma P, Heinonen A, Jarvinen M (1998) Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res 13:1475–1482PubMedCrossRefGoogle Scholar
  36. 36.
    Iwamoto J, Takeda T, Sato Y (2005) Effect of treadmill exercise on bone mass in female rats. Exp Anim 54:1–6PubMedCrossRefGoogle Scholar
  37. 37.
    Fukuda S, Lida H, Hyakutake S, Yan X (2002) Preventive effects of running exerse on bones in heavy ion particle irradiated rats. J Radiat Res 43(Suppl):S233–S238PubMedCrossRefGoogle Scholar
  38. 38.
    Bonnet N, Beaupied H, Vico L, Dolléans E, Laroche L, Courteix D, Benhamou CL (2007) Combined effects of exercise and propranolol on bone tissue in ovarectomized rats. J Bone Miner Res 22(4):578–588PubMedCrossRefGoogle Scholar
  39. 39.
    Bourrin S, Palle S, Genty C, Alexandre C (1995) Physical exercise during remobilization restores a normal bone trabecular network after tail suspension-induced osteopenia in young rats. J Bone Miner Res 10:820–828PubMedGoogle Scholar
  40. 40.
    Hagihara Y, Fukuda S, Goto S, Lida H, Yamazaki M, Moriya H (2005) How many days per week should rats undergo running exercise to increase BMD? J Bone Miner Metab 23:289–294PubMedCrossRefGoogle Scholar
  41. 41.
    Li CY, Jee SS, Chen JL, Mo A, Setterberg RB, Su M, Tian XY, Ling F, Yao W (2003) Estrogen and “exercise” have a synergistic effect in preventing bone loss in the lumbar vertebra and femoral neck of the ovariectomized rat. Calcif Tissue Int 72:42–49PubMedCrossRefGoogle Scholar
  42. 42.
    Iwamoto J, Yeh JK, Aloia JF (1999) Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone 24:163–169PubMedCrossRefGoogle Scholar
  43. 43.
    Joo YI, Sone T, Fukuna ga M, Lim SG, Onodera S (2003) Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 33:485–493PubMedCrossRefGoogle Scholar
  44. 44.
    Newhall KM, Rodnick KJ, van der Meulen MC, Carter DR, Marcus RT (1991) Effects of voluntary exercise on bone mineral content in rats. J Bone Miner Res 6:289–296PubMedCrossRefGoogle Scholar
  45. 45.
    Yeh JK, Aloia JF, Chen MM, Tierney JM, Sprintz S (1993) Influence of exercise on cancellous bone of the aged female rat. J Bone Miner Res 8:117–1125Google Scholar
  46. 46.
    Iwamoto J, Shimamura C, Yakeda T, Abe H, Ichimura S, Sato Y, Toyama Y (2004) Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young rats. J Bone Miner Metab 22:26–31PubMedCrossRefGoogle Scholar
  47. 47.
    Black BL, Gree’nspan FL, Ensrud KE, Palermo L, Mc Gowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ, PATH Study Investigators (2003) The effect of parathyroid hormones and alendronate alone or in combination in post-menopausal osteoporosis. N Engl J Med 349:1207–1215PubMedCrossRefGoogle Scholar
  48. 48.
    Rhee Y, Won YY, Baek MY, Lim SK (2004) Maitenance of increased bone mass after recombinant human parathyroid hormone(1–84) with sequential zoledronate treatment in ovariectomized rats. J Bone Miner Res 19:931–937PubMedCrossRefGoogle Scholar
  49. 49.
    Chilibeck PD, Davison KS, Whiting SJ, Suzuki Y, Janzen CL, Peloso P (2002) Efffect of strength training combined with bisphosphonate (etidronate) therapy on bone mineral, lean tissue, and fat mass in postmenopausal women. Can J Physiol Pharmacol 80:941–950PubMedCrossRefGoogle Scholar
  50. 50.
    Uusi-Rasi K, Kannus P, Cheng S, Sievänen H, Pasanen M, Heinonen A, Nenoren A, Halleen J, Fuerst T, Genant H, Vuori I (2003) Effect of alendronate and exercise on bone and physical performance of postmenopausal women:a randomized controlled trial. Bone 33:132–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. Lespessailles
    • 1
  • C. Jaffré
    • 1
    • 2
  • H. Beaupied
    • 1
  • P. Nanyan
    • 1
  • E. Dolléans
    • 1
  • C. L. Benhamou
    • 1
  • D. Courteix
    • 3
  1. 1.INSERM U658Laboratoire de Caractérisation du Tissu Osseux par Imagerie: Techniques et ApplicationsOrleansFrance
  2. 2.UFR STAPSUniversité d’OrléansOrleans Cedex 2France
  3. 3.Laboratoire de Biologie des APS, UFR STAPSUniversité Blaise PascalAubière CedexFrance

Personalised recommendations