Calcified Tissue International

, Volume 84, Issue 6, pp 439–445 | Cite as

Association of a RUNX2 Promoter Polymorphism with Bone Mineral Density in Postmenopausal Korean Women

  • Hee-Jung Lee
  • Jung-Min Koh
  • Joo-Yeon Hwang
  • Kang-Yell Choi
  • Seung Hun Lee
  • Eui Kyun Park
  • Tae-Ho Kim
  • Bok Ghee Han
  • Ghi Su Kim
  • Shin-Yoon Kim
  • Jong-Young Lee
Article

Abstract

Osteoporosis is characterized by impaired osteoblastogenesis. Bone mineral density (BMD) is a major determinant of bone strength. RUNX2 is an osteoblast-specific transcription factor involved in osteoblast differentiation and ossification. To determine whether RUNX2 is associated with BMD in an ethnically distinct population, we investigated SNPs within the two RUNX2 promoters (P1 and P2) using the Illuminar GoldenGate system in 729 postmenopausal Korean women. Subjects bearing the minor homozygote genotype (CC) at the RUNX2 −1025 T > C SNP (rs7771980) located in P2 showed a significant association with reduced lumbar spine BMD (p = 0.02) and BMDs at proximal femur sites (trochanter, p = 0.05; total femur, p = 0.04) compared with subjects carrying the major homozygote genotype (TT) or the heterozygote genotype (TC), respectively. These results present an interesting genotype association complementary to the previously reported association of BMD with the RUNX2 −1025 T > C P2 SNP in Spanish and Australian cohorts. Therefore, we suggest that the RUNX2 P2 polymorphism (−1025 T > C) may be a useful genetic marker for bone metabolism and may play an important role in BMD in postmenopausal Korean women.

Keywords

Osteoporosis Bone mineral density Promoter RUNX2 Polymorphism 

References

  1. 1.
    Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults: a twin study. J Clin Invest 80:706–710PubMedCrossRefGoogle Scholar
  2. 2.
    Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567PubMedGoogle Scholar
  3. 3.
    Lutz J, Tesar R (1990) Mother-daughter pairs: spinal and femoral bone densities and dietary intakes. Am J Clin Nutr 52:872–877PubMedGoogle Scholar
  4. 4.
    Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G (1995) Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 10:2017–2022PubMedCrossRefGoogle Scholar
  5. 5.
    Hunter DJ, de Lange M, Andrew T, Snieder H, Mac-Gregor AJ, Spector TD (2001) Genetic variation in bone mineral density and calcaneal ultrasound: a study of the influence of menopause using female twins. Osteoporos Int 12:406–411PubMedCrossRefGoogle Scholar
  6. 6.
    Ng MY, Sham PC, Paterson AD, Chan V, Kung AW (2006) Effect of environmental factors and gender on the heritability of bone mineral density and bone size. Ann Hum Genet 70:38–428CrossRefGoogle Scholar
  7. 7.
    Stewart M, Terry A, Hu M, O’Hara M, Bylth K, Baxter E, Cameron E, Onions DE, Neil JC (1997) Proviral insertions induce the expression of bone specific isoforms of PEBP2aA (CBFA1): evidence of a new myc collaborating oncogene. Proc Natl Acad Sci USA 94:8646–8651PubMedCrossRefGoogle Scholar
  8. 8.
    Shui C, Spelsberg TC, Riggs BL, Khosla S (2003) Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 18:213–221PubMedCrossRefGoogle Scholar
  9. 9.
    Stock M, Otto F (2005) Control of RUNX2 isoform expression: the role of promoters and enhancers. J Cell Biochem 95:506–517PubMedCrossRefGoogle Scholar
  10. 10.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764PubMedCrossRefGoogle Scholar
  11. 11.
    Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771PubMedCrossRefGoogle Scholar
  12. 12.
    Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036PubMedCrossRefGoogle Scholar
  13. 13.
    Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779PubMedCrossRefGoogle Scholar
  14. 14.
    Ralston S (2005) Genetic determinants of osteoporosis. Curr Opin Rheumatol 17:475–479PubMedCrossRefGoogle Scholar
  15. 15.
    Audi L, Garcia-Ramirez M, Carrascosa A (1999) Genetic determinants of bone mass. Horm Res 51:105–123PubMedCrossRefGoogle Scholar
  16. 16.
    Vaughan T, Pasco JA, Kotowicz MA, Nicholson GC, Morrison NA (2002) Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res 17:1527–1534PubMedCrossRefGoogle Scholar
  17. 17.
    Vaughan T, Reid DM, Morrison NA, Ralston SH (2004) RUNX2 alleles associated with BMD in Scottish women: interaction of RUNX2 alleles with menopausal status and body mass index. Bone 34:1029–1036PubMedCrossRefGoogle Scholar
  18. 18.
    Doecke JD, Day CJ, Stephens AS, Carter SL, van Daal A, Kotowicz MA, Nicholson GC, Morrison NA (2006) Association of functionally different RUNX2 P2 promoter alleles with BMD. J Bone Miner Res 21:265–273PubMedCrossRefGoogle Scholar
  19. 19.
    Bustamante M, Nogues X, Agueda L, Jurado S, Wesselius A, Caceres E, Carreras R, Ciria M, Mellibovsky L, Balcells S, Diez-Perez A, Grinberg D (2007) Promoter 2–1025 T/C polymorphism in the RUNX2 gene is associated with femoral neck BMD in Spanish postmenopausal women. Calcif Tissue Int 81:327–332PubMedCrossRefGoogle Scholar
  20. 20.
    Nathan H (1962) Osteophytes of the vertebral column: an anatomical study of their development according to age, race, and sex with considerations as to their etiology and significance. J Bone Joint Surg Am 44:243–268. PMID 128790P3Google Scholar
  21. 21.
    Jo JM, Kim JS, Kim GS, Kim SW, Shin JW, Moon DH, Lee HK (1999) Cross-calibration of bone mineral density between two different dual X-ray absorptiometry systems: Hologic QDR 4500-A and Lunar EXPERT-XL. Kor J Nucl Med 33:282–288. PMID 9207020Google Scholar
  22. 22.
    Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149. PMID 9521923PubMedGoogle Scholar
  23. 23.
    Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341. PMID 9521921PubMedGoogle Scholar
  24. 24.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. PMID 12083399PubMedCrossRefGoogle Scholar
  25. 25.
    Xiao ZS, Hjelmeland AB, Quarles LD (2004) Selective deficiency of the “bone-related” Runx2-II unexpectedly preserves osteoblast-mediated skeletogenesis. J Biol Chem 279:20307–20313PubMedCrossRefGoogle Scholar
  26. 26.
    LinksLi Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN (2007) Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J Bone Miner Res 22:646CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hee-Jung Lee
    • 1
  • Jung-Min Koh
    • 2
    • 3
  • Joo-Yeon Hwang
    • 1
  • Kang-Yell Choi
    • 4
  • Seung Hun Lee
    • 2
    • 3
  • Eui Kyun Park
    • 2
    • 5
  • Tae-Ho Kim
    • 2
  • Bok Ghee Han
    • 1
  • Ghi Su Kim
    • 2
    • 3
  • Shin-Yoon Kim
    • 2
    • 6
  • Jong-Young Lee
    • 1
  1. 1.Center for Genome ScienceNational Institute of HealthSeoulRepublic of Korea
  2. 2.Skeletal Diseases Genome Research CenterKyungpook National University HospitalDaeguRepublic of Korea
  3. 3.Division of Endocrinology and MetabolismUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
  4. 4.National Research Laboratory of Molecular Complex Control and Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
  5. 5.Department of Pathology and Regenerative Medicine, School of DentistryKyungpook National UniversityDaeguRepublic of Korea
  6. 6.Department of Orthopedic SurgeryKyungpook National University School of MedicineDaeguRepublic of Korea

Personalised recommendations