Calcified Tissue International

, Volume 82, Issue 6, pp 411–417 | Cite as

Echogenic Carotid Artery Plaques are Associated with Vertebral Fractures in Postmenopausal Women with Low Bone Mass

  • Se Hwa Kim
  • Yoo Mee Kim
  • Mi Ae Cho
  • Yumie Rhee
  • Kyu Yeon Hur
  • Eun Seok Kang
  • Bong Soo Cha
  • Eun Jig Lee
  • Hyun Chul Lee
  • Sung Kil Lim


Although low bone mass has been associated with atherosclerosis even after adjustment for age, little is known about the association between vertebral fractures and calcified atherosclerotic plaques. Our objective was to investigate whether osteoporotic vertebral fractures are independently related to the prevalence of atherosclerotic carotid plaques in postmenopausal women with low bone mass. We enrolled 195 postmenopausal women with osteopenia or osteoporosis. Bone mineral density and the presence of vertebral fractures were assessed. Intima media thickness and atherosclerotic plaques of the carotid artery were assessed using ultrasonography. Of the 195 subjects in the study, 84 had no plaques and 111 had at least one. The percentage of women with vertebral fractures was significantly higher in subjects with echogenic carotid plaques than in those without (27% vs. 11%, respectively; P < 0.05). However, there was no difference in the prevalence of vertebral fractures between women with echolucent plaques and those without (10.9% vs. 10.7%, respectively; P = nonsignificant). By logistic regression analysis with multivariate adjustment, age (P < 0.01), dyslipidemia (P < 0.05), and the presence of vertebral fracture (P < 0.05) were independent risk factors for echogenic carotid plaques. Osteoporotic vertebral fractures are associated with an increased risk of echogenic atherosclerotic plaques in postmenopausal women with low bone mass. It appears that the high association of echogenic atherosclerotic plaques and vertebral fractures could partially explain why osteoporotic vertebral fractures are linked to increased mortality.


Carotid atherosclerosis Echogenic plaque Vertebral fracture Bone mineral density Low bone mass 


  1. 1.
    Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A (1994) Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 90:583–612PubMedGoogle Scholar
  2. 2.
    Kado DM, Browner WS, Blackwell T, Gove R, Cummings SR (2000) Rate of bone loss associated with mortality in older women: a prospective study. J Bone Miner Res 15:1974–1980PubMedCrossRefGoogle Scholar
  3. 3.
    Johnell O, Kanis JA (2006) An estimate of the world prevalence and disability associated with osteoporotic fractures. Osteoporosis Int 17:1726–1733CrossRefGoogle Scholar
  4. 4.
    Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20:1926–1931PubMedGoogle Scholar
  5. 5.
    Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PWF (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68:271–276PubMedCrossRefGoogle Scholar
  6. 6.
    Tanko LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20PubMedCrossRefGoogle Scholar
  7. 7.
    Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253PubMedCrossRefGoogle Scholar
  8. 8.
    von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278PubMedCrossRefGoogle Scholar
  9. 9.
    Doherty TM, Detrano RC (1994) Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif Tissue Int 54:224–230PubMedCrossRefGoogle Scholar
  10. 10.
    Jørgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160:549–556PubMedCrossRefGoogle Scholar
  11. 11.
    Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65PubMedGoogle Scholar
  12. 12.
    Fitti JE, Kovar MG (1987) The supplement on aging to the 1984 National Health Interview Survey. Vital Health Stat 1:1–115Google Scholar
  13. 13.
    Genant HK, Wu CY, Van Kuijk C, Nevitt M (1993) Vertebral fracture assessment using a SQ technique. J Bone Miner Res 8:1137–1148PubMedGoogle Scholar
  14. 14.
    Yokoyama H, Aoki T, Imahori M, Kuramitsu M (2004) Subclinical atherosclerosis is increased in type 2 diabetic patients with microalbuminuria evaluated by intima-media thickness and pulse wave velocity. Kidney Int 66:448–454PubMedCrossRefGoogle Scholar
  15. 15.
    Kim SH, Lee SJ, Kang ES, Kang S, Hur KY, Lee HJ, Ahn CW, Cha BS, Yoo JS, Lee CH (2006) Effects of lifestyle modification on metabolic parameters and carotid intima-media thickness in patients with type 2 diabetes mellitus. Metabolism 55:1053–1059PubMedCrossRefGoogle Scholar
  16. 16.
    Joakimsen O, Bønaa KH, Stensland-Bugge E (1997) Reproducibility of ultrasound assessment of carotid plaque occurrence, thickness, and morphology. The Tromsø Study. Stroke 28:2201–2207PubMedGoogle Scholar
  17. 17.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  18. 18.
    Bots ML, Hoe AW, Koudstaal PJ, Hofman A, Grobbee DE (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction; the Rotterdam Study. Circulation 96:1432–1437PubMedGoogle Scholar
  19. 19.
    Gronholdt ML (1999) Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery. Arterioscler Thromb Vasc Biol 19:2–13PubMedGoogle Scholar
  20. 20.
    Sabetai MM, Tegos TJ, Nicolaides AN, Dhanjil S, Pare GJ, Stevens JM (2000) Reproducibility of computer-quantified carotid plaque echogenicity; can we overcome the subjectivity? Stroke 31:2189–2196PubMedGoogle Scholar
  21. 21.
    Bots ML, Breslau PJ, Briet E, de Bruyn AM, van Vliet HH, van den Ouweland FA, de Jong PT, Hofman A, Grobbee DE (1992) Cardiovascular determinants of carotid artery disease: the Rotterdam Elderly Study. Hypertension 19:717–720PubMedGoogle Scholar
  22. 22.
    Nichols WW, Pepine CJ, O’Rourke MF (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke. N Engl J Med 340:1762–1763PubMedCrossRefGoogle Scholar
  23. 23.
    Young W, Gofman J, Tandy R, Malamud N, Waters E (1960) The quantitation of atherosclerosis III. The extent of correlation of degrees of atherosclerosis with and between the coronary and cerebral vascular beds. Am J Cardiol 8:300–308CrossRefGoogle Scholar
  24. 24.
    Sakaguchi M, Kitagawa K, Nagai Y, Yamagami H, Kondo K, Matsushita K, Oku N, Hougaku H, Ohtsuki T, Masuyama T (2003) Equivalence of plaque score and intima-media thickness of carotid ultrasonography for predicting severe coronary artery lesion. Ultrasound Med Biol 29:357–371CrossRefGoogle Scholar
  25. 25.
    Giral P, Bruckert E, Dairou F, Boubrit K, Drobinski G, Chapman JM, Beucler I, Turpin G (1999) Usefulness in predicting coronary artery disease by ultrasonic evaluation of the carotid arteries in asymptomatic hypercholesterolemic patients with positive exercise stress tests. Am J Cardiol 84:14–17PubMedCrossRefGoogle Scholar
  26. 26.
    Van der Meer I, Bost ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109:1089–1094PubMedCrossRefGoogle Scholar
  27. 27.
    Stork S, van den Beld AW, von Schacky C, Angermann CE, Lamberts SW, Grobbee DE, Bots ML (2004) Carotid artery plaque burden, stiffness, and mortality risk in elderly men: a prospective, population-based cohort study. Circulation 110:344–348PubMedCrossRefGoogle Scholar
  28. 28.
    Wattanaki K, Folsom AR, Chambless LE, Nieto FJ (2005) Risk factors for cardiovascular event recurrence in the Atherosclerosis Risk in Communities (ARIC) study. Am Heart J 149:606–612CrossRefGoogle Scholar
  29. 29.
    Honda O, Sugiyama S, Kugiyama K, Fukushima H, Nakamura S, Koide S, Kojima S, Hirai N, Kawano H, Soejima H, Sakamoto T, Yoshimura M, Ogawa H (2004) Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol 43:1177–1184PubMedCrossRefGoogle Scholar
  30. 30.
    Jorgensen L, Joakimsen O, Mathiesen EB, Ahmed L, Bernsten GKR, Fonnebo V, Joakimsen R, Njolstad I, Schirmer H, Jacobsen BK (2006) Carotid plaque echogenicity and risk of nonvertebral fractures in women: a longitudinal population-based study. Calcif Tissue Int 79:207–213PubMedCrossRefGoogle Scholar
  31. 31.
    Ettinger B, Black DM, Nevitt MC, Rundle AC, Cauley JA, Cummings SR, Genant HK (1992) Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 7:449–456PubMedCrossRefGoogle Scholar
  32. 32.
    Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Res 14:821–828PubMedCrossRefGoogle Scholar
  33. 33.
    Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–19SPubMedCrossRefGoogle Scholar
  34. 34.
    Demer LL, Tintut Y (2003) Mineral exploration; search for the mechanism of vascular calcification and beyond. The 2003 Jeffrey M. Hoeg Award lecture. Arterioscler Thromb Vasc Biol 23:1739–1743PubMedCrossRefGoogle Scholar
  35. 35.
    Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1161–1170PubMedCrossRefGoogle Scholar
  36. 36.
    Golledge J, McCann M, Mangan S, Lam A, Karan M (2004) Osteoprotegerin and osteopontin are expressed at high concentration within symptomatic carotid artherosclerosis. Stroke 35:1636–1641PubMedCrossRefGoogle Scholar
  37. 37.
    Jono S, Ikari Y, Shioi A, Mori K, Miki T, Hara K, Nishizawa Y (2002) Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 106:1192–1194PubMedCrossRefGoogle Scholar
  38. 38.
    Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, Santer P, Smolen J, Poewe W, Willeit J (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:2175–2180PubMedCrossRefGoogle Scholar
  39. 39.
    Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedCrossRefGoogle Scholar
  40. 40.
    Mantovani A, Sozzani S, Introna M (1997) Endothelial activation by cytokines. Ann N Y Acad Sci 832:93–116PubMedCrossRefGoogle Scholar
  41. 41.
    Pepys MB, Baltz ML (1983) Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 34:141–212PubMedCrossRefGoogle Scholar
  42. 42.
    Demer LL (2002) Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int J Epidemiol 31:737–741PubMedCrossRefGoogle Scholar
  43. 43.
    Falcone C, Emanuele E, D’Angelo A, Buzzi MP, Belvito C, Cuccia M, Geroldi D (2005) Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032–1037PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Se Hwa Kim
    • 1
  • Yoo Mee Kim
    • 2
  • Mi Ae Cho
    • 3
  • Yumie Rhee
    • 3
    • 4
  • Kyu Yeon Hur
    • 5
  • Eun Seok Kang
    • 3
    • 4
    • 5
  • Bong Soo Cha
    • 3
    • 4
    • 5
  • Eun Jig Lee
    • 3
    • 4
    • 5
  • Hyun Chul Lee
    • 3
    • 4
    • 5
  • Sung Kil Lim
    • 3
    • 4
    • 5
  1. 1.Division of Endocrinology, Department of Internal MedicineKwandong University College of Medicine, Myongji HospitalGoyangSouth Korea
  2. 2.Division of Endocrinology, Department of Internal MedicineNational Health Insurance Corporation Ilsan HospitalGoyangSouth Korea
  3. 3.Division of Endocrinology and Metabolism, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
  4. 4.Institute of Endocrine ResearchYonsei University College of MedicineSeoulSouth Korea
  5. 5.Brain Korea 21 Project for Medical SciencesYonsei UniversitySeoulSouth Korea

Personalised recommendations