Advertisement

Calcified Tissue International

, Volume 82, Issue 3, pp 221–228 | Cite as

l-Carnitine Fumarate and Isovaleryl-l-Carnitine Fumarate Accelerate the Recovery of Bone Volume/Total Volume Ratio after Experimetally Induced Osteoporosis in Pregnant Mice

  • N. Patano
  • L. Mancini
  • M. P. Settanni
  • M. Strippoli
  • G. Brunetti
  • G. Greco
  • R. Tamma
  • R. Vergari
  • F. Sardelli
  • A. Koverech
  • S. Colucci
  • A. Zallone
  • M. Grano
Article

Abstract

Anabolic skeletal agents have recently broadened the therapeutic options for osteoporosis by directly stimulating bone formation and improving bone turnover, bone density, bone size, and bone microarchitecture. We recently demonstrated that two new l-carnitine derivatives, l-carnitine fumarate (LC) and isovaleryl-l-carnitine fumarate (Iso-V-LC), stimulated osteoblast proliferation and differentiation. We here investigated, by histomorphometry in a mouse model of osteoporosis, the impact of these compounds on the repair of trabecular bone and the osteoblast involvement in this process. Fifty-nine inbred adult female CD1 mice in pregnancy were assigned to four treatment groups: (1) controls, mice fed a standard normocalcemic pre- and postpartal diet; (2) Hypo, mice fed a low-calcium isocaloric prepartal diet and a standard postpartal diet; (3) LC, mice fed a group 2-type diet supplemented post-partum with LC; (4) Iso-V-LC, mice fed a group 2-type diet supplemented post-partum with Iso-V-LC. Bone volume/total volume ratio (BV/TV), bone perimeter, osteoblast surface/bone surface, and osteoblast number/bone surface were measured from sections of L3 and L4 vertebral bodies obtained from animals killed on the day of delivery (controls and Hypo) and on days 7, 14, and 21 after delivery (all groups). BV/TV and all osteoblast-based indexes were significantly higher in LC and Iso-V-LC than in Hypo mice at each time point, and Iso-V-LC at the end of the treatment attained levels observed in controls. In conclusion, Iso-V-LC and, to a lesser extent, LC accelerated the recovery of normal BV/TV level after a hypocalcemic diet.

Keywords

Carnitine Carnitine derivative Bone histomorphometry Osteoporosis 

References

  1. 1.
    Borum PR (1980) Regulation of carnitine concentration in plasma. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism and functions. Academic Press, New York, pp 115–126Google Scholar
  2. 2.
    Evangeliou A, Vlassopoulos D (2003) Carnitine metabolism and deficit—when is supplementation necessary? Curr Pharm Biotechnol 4:211–219PubMedCrossRefGoogle Scholar
  3. 3.
    Maccari F, Arseni A, Chiodi P, Ramacci MT, Angelucci L (1990) Levels of carnitines in brain and other tissues of rats of different ages: effect of acetylitine administration. Exp Gerontol 25:127–134PubMedCrossRefGoogle Scholar
  4. 4.
    Costell M, O’Connor JE, Grisolia S (1989) Age-dependent decrease of carnitine content in muscle of mice and humans. Biochem Biophys Res Commun 161:1135–1143PubMedCrossRefGoogle Scholar
  5. 5.
    Costell M, Grisolia S (1993) Effect of carnitine feeding on the levels of heart and skeletal muscle carnitine of elderly mice. FEBS Lett 315:43–46PubMedCrossRefGoogle Scholar
  6. 6.
    Adamek G, Felix R, Guenther HL, Fleisch H (1987) Fatty acid oxidation in bone tissue and bone cells in culture. Biochem J 242:129–137Google Scholar
  7. 7.
    Colucci S, Mori G, Vaira S, Brunetti G, Greco G, Mancini L, Simone GM, Sardelli F, Koverech A, Zallone A, Grano M (2005) l-Carnitine and isovaleryl l-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro. Calcif Tissue Int 76:458–465PubMedCrossRefGoogle Scholar
  8. 8.
    Chiu KM, Keller ET, Crenshaw TD, Gravenstein S (1999) Carnitine and dehydroepiandrosterone sulphate induced protein synthesis in porcine osteoblast-like cells. Calcif Tissue Int 64:527–533PubMedCrossRefGoogle Scholar
  9. 9.
    Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184PubMedCrossRefGoogle Scholar
  10. 10.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441PubMedCrossRefGoogle Scholar
  11. 11.
    Benvenga S, Ruggeri RM, Russo A, Lapa D, Campenni A, Trimarchi F (2001) Usefulness of l-carnitine, a naturally occurring peripheral antagonist of thyroid hormone action, in iatrogenic hyperthyroidism: a randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol Metab 86:3579–3594PubMedCrossRefGoogle Scholar
  12. 12.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  13. 13.
    Salomon CD, Volpin G (1970) Fine structure of bone resorption in experimental osteoporosis caused by calcium deficient diet in rats. An electron microscopic study of compact bone. Calcif Tissue Res 4:80–82CrossRefGoogle Scholar
  14. 14.
    Ornoy A, Wolinsky I, Guggenheim K (1974) Structure of long bones of rats and mice fed a low calcium diet. Calcif Tissue Res 15:71–76PubMedCrossRefGoogle Scholar
  15. 15.
    Shen V, Birchman R, Xu R, Lindsay R, Dempster DW (1995) Short term changes in histomorphometric and biochemical turnover markers and bone mineral density in estrogen- and/or dietary calcium-deficient rats. Bone 16:149–156PubMedCrossRefGoogle Scholar
  16. 16.
    Kunkel ME, Powers DL, Hord NG (1990) Comparison of chemical, histomorphometric, and absorptiometric analyses of bones of growing rats subjected to dietary calcium stress. J Am Coll Nutr 9:633–640PubMedGoogle Scholar
  17. 17.
    Thomas ML, Simmons DJ, Kidder L, Ibarra MJ (1991) Calcium metabolism and bone mineralization in female rats fed diets marginally sufficient in calcium: effects of increased dietary calcium intake. Bone Miner 12:1–14PubMedCrossRefGoogle Scholar
  18. 18.
    Weinreb M, Rodan GA, Thompson DD (1991) Immobilization related bone loss in the rat is increased by calcium deficiency. Calcif Tissue Int 48:93–100PubMedCrossRefGoogle Scholar
  19. 19.
    Shen V, Birchman R, Xu R, Lindsay R, Dempster DW (1995) Short term changes in histomorphometric and biochemical turnover markers and bone mineral density in estrogen- and/or dietary calcium-deficient rats. Bone 16:149–156PubMedCrossRefGoogle Scholar
  20. 20.
    Kovacs CS, Kronenberg HM (1997) Maternal–fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 18:832–872PubMedCrossRefGoogle Scholar
  21. 21.
    Kiefer MC, Schmid C, Waldvogel M, Schlapfer I, Futo E, Masiarz FR, Green K, Barr PJ, Zapf J (1992) Characterization of recombinant human insulin-like growth factor binding proteins 4, 5, and 6 produced in yeast. J Biol Chem 267:12692–12699PubMedGoogle Scholar
  22. 22.
    Ernst M, Rodan GA (1990) Increased activity of insulin-like growth factor (IGF) in osteoblastic cells in the presence of growth hormone (GH): positive correlation with the presence of the GH-induced IGF-binding protein BP-3. Endocrinology 127:807–814PubMedCrossRefGoogle Scholar
  23. 23.
    Conover CA, Kiefer MC (1993) Regulation and biological effect of endogenous insulin-like growth factor binding protein-5 in human osteoblastic cells. J Clin Endocrinol Metab 76:1153–1159PubMedCrossRefGoogle Scholar
  24. 24.
    Benvenga S, Ruggeri RM, Russo A, Lapa D, Campenni A, Trimarchi F (2001) Usefulness of l-carnitine, a naturally occurring peripheral antagonist of thyroid hormone action, in iatrogenic hyperthyroidism: a randomized, double-blind, placebo-controlled clinical trial. Clin Endocrinol Metab 86:3579–3594CrossRefGoogle Scholar
  25. 25.
    Benvenga S, Amato A, Calvani M, Trimarchi F (2004) Effects of carnitine on thyroid hormone action. Ann N Y Acad Sci 1033:158–167PubMedCrossRefGoogle Scholar
  26. 26.
    Sener G, Eksioglu-Demiralp E, Cetiner M, Ercan F, Sirvanci S, Gedik N, Yegen BC (2006) l-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biol Toxicol 2006:47–60CrossRefGoogle Scholar
  27. 27.
    Abd-Allah AR, Al-Majed AA, Al-Yahya AA, Fouda SI, Al-Shabana OA (2005) l-Carnitine halts apoptosis and myelosuppression induced by carboplatin in rat bone marrow cell cultures (BMC). Arch Toxicol 79:406–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N. Patano
    • 1
  • L. Mancini
    • 1
  • M. P. Settanni
    • 1
  • M. Strippoli
    • 1
  • G. Brunetti
    • 1
  • G. Greco
    • 1
  • R. Tamma
    • 1
  • R. Vergari
    • 1
  • F. Sardelli
    • 2
  • A. Koverech
    • 2
  • S. Colucci
    • 1
  • A. Zallone
    • 1
  • M. Grano
    • 1
  1. 1.Department of Human Anatomy and HistologyUniversity of BariBariItaly
  2. 2.Carnitine Research and Development DepartmentSIGMA TAUPomezia, RomeItaly

Personalised recommendations