Advertisement

Calcified Tissue International

, Volume 82, Issue 1, pp 66–76 | Cite as

Phenotypic Characteristics of Bone in Carbonic Anhydrase II-Deficient Mice

  • David S. Margolis
  • John A. Szivek
  • Li-Wen Lai
  • Yeong-Hau H. Lien
Article

Abstract

Carbonic anhydrase II (CAII)-deficient mice were created to study the syndrome of CAII deficiency in humans including osteopetrosis, renal tubular acidosis, and cerebral calcification. Although CAII mice have renal tubular acidosis, studies that analyzed only cortical bones found no changes characteristic of osteopetrosis. Consistent with previous studies, the tibiae of CAII-deficient mice were significantly smaller than those of wild-type (WT) mice (28.7 ± 0.9 vs. 43.6 ± 3.7 mg; p < 0.005), and the normalized cortical bone volume of CAII-deficient mice (79.3 ± 2.2%) was within 5% of that of WT mice (82.7 ± 2.3%; p < 0.05), however, metaphyseal widening of the tibial plateau was noted in CAII-deficient mice, consistent with osteopetrosis. In contrast to cortical bone, trabecular bone volume demonstrated a nearly 50% increase in CAII-deficient mice (22.9 ± 3.5% in CAII, compared to 15.3 ± 1.6% in WT; p < 0.001). In addition, histomorphometry demonstrated that bone formation rate was decreased by 68% in cortical bone (4.77 ± 1.65 μm3/μm2/day in WT vs. 2.07 ± 1.71 μm3/μm2/day in CAII mice; p < 0.05) and 55% in trabecular bone (0.617 ± 0.230 μm3/μm2/day in WT vs. 0.272 ± 0.114 μm3/μm2/day in CAII mice; p < 0.05) in CAII-deficient mice. The number of osteoclasts was significantly increased (67%) in CAII-deficient mice, while osteoblast number was not different from that in WT mice. The metaphyseal widening and changes in the trabecular bone are consistent with osteopetrosis, making the CAII-deficient mouse a valuable model of human disease.

Keywords

Carbonic anhydrase II Osteopetrosis Renal tubular acidosis Osteoclast Osteoblast 

Notes

Acknowledgments

This work was supported by a grant from the Dialysis Clinic, Inc., a not-for-profit organization and by Grants NIHT35 HL07479 and NBIB P41-EB002035-5. D. S. Margolis was supported in part by the NIH through Graduate Training in Physiology Grant HL07249 and Short-Term Training: Students in Health Professional Sciences Grant T35HL07479, and J.A. Szivek was supported in part by NIBIB Grant R01-EB00060. The histological data were generated by the TACMASS (Tissue Acquisition and Cellular/Molecular Analysis Shared Service) Core at the Arizona Cancer Center, supported by NIH Grant CA23074. The TEM data were generated by the Arizona Research Labs Division of Biotechnology CORE imaging facility.

References

  1. 1.
    Tolar J, Teitelbaum SL, Orchard PJ (2004) Mechanisms of disease: osteopetrosis. N Engl J Med 351:2839–2849PubMedCrossRefGoogle Scholar
  2. 2.
    Sly WS, Whyte MP, Hewettemmett D, Yu YSL, Tashian RE (1983) Carbonic anhydrase-II deficiency identified as the primary defect in four kindreds with the syndrome of osteopetrosis–renal tubular-acidosis–basal ganglia calcification. Calcif Tissue Int 35:688–688Google Scholar
  3. 3.
    Ohlsson A, Stark G, Sakati N (1980) Marble brain disease – recessive osteopetrosis, renal tubular-acidosis and cerebral calcification in 3 Saudi Arabian fFamilies. Dev Med Child Neurol 22:72–84PubMedCrossRefGoogle Scholar
  4. 4.
    Ohlsson A, Cumming WA, Paul A, Sly WS (1986) Carbonic anhydrase-II deficiency syndrome –recessive osteopetrosis with renal tubular-acidosis and cerebral calcification. Clin Invest Med 9:A139–A139Google Scholar
  5. 5.
    Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-Ethyl-N-nitrosourea induced null mutation at the mouse car-2 locus—an animal-model for human carbonic anhydrase-II deficiency syndrome. Proc Natl Acad Sci USA 85:1962–1966PubMedCrossRefGoogle Scholar
  6. 6.
    Jepsen KJ, Goldstein SA, Biesecker LG, Spicer SS, Erickson RP (1990) The mechanical properties of cortical bone from carbonic anhydrase II deficient mice. Am J Hum Genet 47S:A159Google Scholar
  7. 7.
    Lien YHH, Lai LW (1998) Respiratory acidosis in carbonic anhydrase II-deficient mice. Am J Physiol 274:L301–L304PubMedGoogle Scholar
  8. 8.
    Lai LW, Chan DM, Erickson RP, Hsu SJ, Lien YHH (1998) Correction of renal tubular acidosis in carbonic anhydrase II-deficient mice with gene therapy. J Clin Invest 101:1320–1325PubMedCrossRefGoogle Scholar
  9. 9.
    Tashian RE (1992) Genetics of the mammalian carbonic-anhydrases. Adv Genet 30:321–356PubMedCrossRefGoogle Scholar
  10. 10.
    Emmanual J, Hornbeck C, Bloebaum RD (1987) A poly(methyl methacrylate method for large specimens of mineralized bone with implants. Stain Technol 62:401–410PubMedGoogle Scholar
  11. 11.
    Villanueva AR, Lundin KD (1989) A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams. Stain Technol 64:129–138PubMedGoogle Scholar
  12. 12.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry—standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  13. 13.
    Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31PubMedCrossRefGoogle Scholar
  14. 14.
    Margolis DS, Kim D, Szivek JA, Lai LW, Lien YH (2006) Functionally improved bone in calbindin-D28k knockout mice. Bone 39:477–484PubMedCrossRefGoogle Scholar
  15. 15.
    Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403PubMedCrossRefGoogle Scholar
  16. 16.
    Sheng MHC, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau KHW, Wergedal JE (1999) Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth. Bone 25:421–429PubMedCrossRefGoogle Scholar
  17. 17.
    Kodama Y, Umemura Y, Nagasawa S, Beamer WG, Donahue LR, Rosen CR, Baylink DJ, Farley JR (2000) Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice. Calcif Tissue Int 66:298–306PubMedCrossRefGoogle Scholar
  18. 18.
    Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346PubMedCrossRefGoogle Scholar
  19. 19.
    Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, Dupuis-Girod S, Ellis I, Etzioni A, Fasth A, Fisher A, Gerritsen B, Gulino V, Horwitz E, Klamroth V, Lanino E, Mirolo M, Musio A, Matthijs G, Nonomaya S, Notarangelo LD, Ochs HD, Furga AS, Valiaho J, van Hove JLK, Vihinen M, Vujic D, Vezzoni P, Villa A (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773PubMedCrossRefGoogle Scholar
  20. 20.
    Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747PubMedCrossRefGoogle Scholar
  21. 21.
    Cleiren E, Benichou O, Hul EV, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Hul WV (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the CICN7chloride channel gene. Hum Mol Genet 10:2861–2867PubMedCrossRefGoogle Scholar
  22. 22.
    Whyte MP (1993) Carbonic anhydrase-II deficiency. Clin Orthop Relat Res 294:52–63PubMedGoogle Scholar
  23. 23.
    Whyte MP, Murphy WA, Fallon MD, Sly WS, Teitelbaum SL, McAlister WH, Avioli LV (1980) Osteopetrosis, renal tubular-acidosis and basal ganglia calcification in three sisters. Am J Med 69:64–74PubMedCrossRefGoogle Scholar
  24. 24.
    Li YP, Chen W, Liang YQ, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451PubMedCrossRefGoogle Scholar
  25. 25.
    Marks SC, Seifert MF, Lane PW (1985) Osteosclerosis, a recessive skeletal mutation on chromosome 19 in the mouse. J Hered 76:171–176PubMedGoogle Scholar
  26. 26.
    Scimeca JC, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C, Jaillon O, Poirier C, Gaudray P, Carle GF (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26:207–213PubMedCrossRefGoogle Scholar
  27. 27.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215PubMedCrossRefGoogle Scholar
  28. 28.
    Brion LP, Cammer W, Satlin LM, Suarez C, Zavilowitz BJ, Schuster VL (1997) Expression of carbonic anhydrase IV in carbonic anhydrase II-deficient mice. Am J Physiol 42:F234–F245Google Scholar
  29. 29.
    Bushinsky DA, Frick KK (2000) The effects of acid on bone. Curr Opin Nephrol Hypertens 9:369–379PubMedCrossRefGoogle Scholar
  30. 30.
    Meghji S, Morrison MS, Henderson B, Arnett TR (2001) pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol 280:E112–E119Google Scholar
  31. 31.
    Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 40:F216–F222Google Scholar
  32. 32.
    Bushinsky DA (1995) Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory-acidosis. Am J Physiol 37:C80–C88Google Scholar
  33. 33.
    Laitala T, Vaananen HK (1994) Inhibition of bone-resorption in-vitro by antisense RNA and DNA-molecules targeted against carbonic-anhydrase-II or 2 subunits of vacuolar H+-ATPase. J Clin Invest 93:2311–2318PubMedCrossRefGoogle Scholar
  34. 34.
    Lehenkari P, Hentunen TA, Laitala-Leinonen T, Tuukkanen J, Vaananen HK (1998) Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+. Exp Cell Res 242:128–137PubMedCrossRefGoogle Scholar
  35. 35.
    Nordstrom T, Shrode LD, Rotstein OD, Romanek R, Goto T, Heersche JNM, Manolson MF, Brisseau GF, Grinstein S (1997) Chronic extracellular acidosis induces plasmalemmal vacuolar type H+ ATPase activity in osteoclasts. J Biol Chem 272:6354–6360PubMedCrossRefGoogle Scholar
  36. 36.
    Lemann J, Litzow JR, Lennon EJ (1966) Effects of chronic acid loads in normal man—further evidence for participation of bone mineral in defense against chronic metabolic acidosis. J Clin Invest 45:1608–1614PubMedCrossRefGoogle Scholar
  37. 37.
    Phelps KR, Einhorn TA, Vigorita VJ, Lieberman RL, Uribarri J (1986) Acidosis-induced osteomalacia—metabolic studies and skeletal histomorphometry. Bone 7:171–179PubMedCrossRefGoogle Scholar
  38. 38.
    Frick KK, Bushinsky DA (1999) In vitro metabolic and respiratory acidosis selectively inhibit osteoblastic matrix gene expression. Am J Physiol 277:F750–F755PubMedGoogle Scholar
  39. 39.
    Frick KK, Bushinsky DA (1998) Chronic metabolic acidosis reversibly inhibits extracellular matrix gene expression in mouse osteoblasts. Am J Physiol 44:F840–F847Google Scholar
  40. 40.
    Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS (1997) Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat 9:576–576CrossRefGoogle Scholar
  41. 41.
    Shah GN, Bonapace G, Hu PY (2004) Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 24:272PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David S. Margolis
    • 1
  • John A. Szivek
    • 1
  • Li-Wen Lai
    • 2
  • Yeong-Hau H. Lien
    • 2
  1. 1.Orthopaedic Research Lab, Department of Orthopaedic SurgeryUniversity of ArizonaTucsonUSA
  2. 2.Department of MedicineUniversity of ArizonaTucsonUSA

Personalised recommendations