Advertisement

Calcified Tissue International

, Volume 82, Issue 2, pp 108–115 | Cite as

Secreted Tartrate-Resistant Acid Phosphatase 5b is a Marker of Osteoclast Number in Human Osteoclast Cultures and the Rat Ovariectomy Model

  • Jukka P. RissanenEmail author
  • Mari I. Suominen
  • Zhiqi Peng
  • Jussi M. Halleen
Article

Abstract

Purpose:

To study the effects of estrogen withdrawal on osteoclast number and osteoclast activity in the rat ovariectomy (OVX) model.

Methods:

We first cultured human CD34+ osteoclast precursor cells on bovine bone slices, allowing them to differentiate into mature resorbing osteoclasts. Secreted tartrate-resistant acid phosphatase 5b (TRACP 5b) and C-terminal cross-linked telopeptides of type I collagen (CTX) were determined from the culture medium. TRACP 5b correlated strongly with osteoclast number and CTX with osteoclast activity, facilitating their subsequent use in the rat OVX model. An 8 week OVX study was then performed including sham-operated rats receiving vehicle, OVX rats receiving vehicle, and OVX rats receiving 10 μg/kg/day 17β-estradiol (E2). Trabecular bone parameters were determined from the tibial metaphysis using peripheral quantitative computed tomography and histomorphometry. Osteoclast number was normalized with bone perimeter (N.Oc/B.Pm) and tissue area (N.Oc/T.Ar, indicating absolute number of osteoclasts). TRACP 5b and CTX were determined from fasting serum samples.

Results:

Trabecular bone parameters indicated substantial bone loss after OVX that was prevented by E2. N.Oc/B.Pm increased after OVX, while N.Oc/T.Ar and TRACP 5b decreased, and TRACP 5b correlated strongly with N.Oc/T.Ar. However, CTX values increased after OVX, and the “resorption index” CTX/TRACP 5b showed more substantial changes than either CTX or TRACP 5b alone.

Conclusion:

These results show that TRACP 5b is a reliable marker of osteoclast number, and the index CTX/TRACP 5b is a useful parameter in rat OVX model. The high elevation of CTX/TRACP 5b values by OVX demonstrates that estrogen withdrawal generates high activity of osteoclasts in the rat OVX model.

Keywords

CTX Osteoclast activity Osteoclast number Ovariectomy Resorption index TRACP 5b 

Notes

Acknowledgments

We thank Suvi Suutari and Salla Ylönen for their skillful technical assistance and the Finnish Funding Agency for Technology and Innovations (TEKES) for financial support.

References

  1. 1.
    Yaziji H, Janckila AJ, Lear SC, Martin AW, Yam LT (1995) Immunohistochemical detection of tartrate-resistant acid phosphatase in non-hematopoietic human tissues. Am J Clin Pathol 104:397–402PubMedGoogle Scholar
  2. 2.
    Hayman AR, Macary P, Lehner PJ, Cox TM (2001) Tartrate-resistant acid phosphatase (Acp 5): Identification in diverse human tissues and dendritic cells. J Histochem Cytochem 49:675–684PubMedGoogle Scholar
  3. 3.
    Lam WK, Eastlund DT, Li CY, Yam LT (1978) Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem 24:1105–1108PubMedGoogle Scholar
  4. 4.
    Janckila AJ, Parthasarathy RN, Parthasarathy LK, et al. (2005) Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 77:209–218PubMedCrossRefGoogle Scholar
  5. 5.
    Lam KW, Li CY, Yam LT, Desnick RJ (1981) Comparison of the tartrate-resistant acid phosphatase in Gaucher’s disease and leukemic reticuloendotheliosis. Clin Biochem 14:177–181PubMedCrossRefGoogle Scholar
  6. 6.
    Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem 47:74–80PubMedGoogle Scholar
  7. 7.
    Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Yam LT (2002) Stable expression of human tartrate-resistant acid phosphatase isoforms by CHO cells. Clin Chim Acta 326:113–122PubMedCrossRefGoogle Scholar
  8. 8.
    Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Väänänen HK (2006) Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption (review). Clin Lab 52:499–509PubMedGoogle Scholar
  9. 9.
    Stepan JJ, Silinkova-Malkova E, Havranek T, et al. (1993) Relationship of plasma tartrate resistant acid phosphatase to the bone isoenzyme of serum alkaline phosphatase in hyperparathyroidism. Clin Chim Acta 133:189–200Google Scholar
  10. 10.
    Alatalo SL, Halleen JM, Hentunen TA, Mönkkönen J, Väänänen HK (2000) Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into the culture medium. Clin Chem 46:1751–1754PubMedGoogle Scholar
  11. 11.
    Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT (2003) Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 41:1052–1059PubMedCrossRefGoogle Scholar
  12. 12.
    Alatalo SL, Penq Z, Janckila AJ, et al. (2003) A novel immunoassay for the determination of tartrate-resistant acid phosphatase 5b from rat serum. J Bone Miner Res 18:134–139PubMedCrossRefGoogle Scholar
  13. 13.
    Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Väänänen HK, Halleen JM (2004) Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem 50:883–890PubMedCrossRefGoogle Scholar
  14. 14.
    Quinn JM, Elliott J, Gillespie MT, Martin TJ (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139:4424–4427PubMedCrossRefGoogle Scholar
  15. 15.
    Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD34-positive monocytes. Br J Haematol 106:167–170PubMedCrossRefGoogle Scholar
  16. 16.
    Nicholson GC, Malakellis M, Collier FM, et al. (2000) Induction of osteoclasts from CD34-positive human peripheral blood mononuclear cells by receptor activator of nuclear factor kappaB ligand (RANKL). Clin Sci (Lond) 99:133–140CrossRefGoogle Scholar
  17. 17.
    Boyde A, Ali NN, Jones SJ (1984) Resorption of dentine by isolated osteoclasts in vitro. Br Dent J 156:216–220PubMedCrossRefGoogle Scholar
  18. 18.
    Chambers TJ, Revell PA, Fuller K, Athanasou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 66:383–399PubMedGoogle Scholar
  19. 19.
    Selander K, Lehenkari P, Väänänen HK (1994) The effects of bisphosphonates on the resorption cycle of isolated osteoclasts. Calcif Tissue Int 55:368–375PubMedCrossRefGoogle Scholar
  20. 20.
    Christgau S, Rosenquist C, Alexandersen P, et al. (1998) Clinical evaluation of the Serum CrossLaps One Step ELISA, a new assay measuring the serum concentration of bone-derived degradation products of type I collagen C-telopeptides. Clin Chem 44:2290–2300PubMedGoogle Scholar
  21. 21.
    Bagger YZ, Foged NT, Andersen L, Lou H, Qvist P (1999) CrossLaps for culture: An improved enzyme-linked immunosorbent assay (ELISA) for measuring bone resorption in vitro. J Bone Miner Res 14 (Suppl. 1):S370 (abstract)Google Scholar
  22. 22.
    Parfitt AM, Drezner MK, Glorieux FH et al. (1987) Bone histomorphometry: Standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  23. 23.
    Gurkan L, Ekeland A, Gautvik KM, Langeland N, Ronningen H, Solheim LF (1986) Bone changes after castration in rats. A model for osteoporosis. Acta Orthop Scand 57:67–70PubMedCrossRefGoogle Scholar
  24. 24.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191PubMedCrossRefGoogle Scholar
  25. 25.
    Vanderscueren D, Van Herck E, Suiker AM, Visser WJ, Schot LP, Bouillon R (1992) Bone and mineral metabolism in aged male rats: Short and long term effects of androgen deficiency. Endocrinology 130:2906–2916CrossRefGoogle Scholar
  26. 26.
    Erben RG, Eberle J, Stahr K, Goldberg M (2000) Androgen deficiency induces high turnover osteopenia in aged male rats: A sequential histomorphometric study. J Bone Miner Res 15:1085–1098PubMedCrossRefGoogle Scholar
  27. 27.
    Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: A novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345PubMedCrossRefGoogle Scholar
  28. 28.
    Hannon RA, Clowes JA, Eagleton AC, Al Hadari AA, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194PubMedCrossRefGoogle Scholar
  29. 29.
    Henriksen DB, Alexandersen P, Bjarnason NH, et al. (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189PubMedCrossRefGoogle Scholar
  30. 30.
    Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Väänänen HK (2001) Serum tartrate-resistant acid phosphatase is a specific and sensitive marker of bone resorption. Clin Chem 47:597–600PubMedGoogle Scholar
  31. 31.
    Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 97:7829–7834PubMedCrossRefGoogle Scholar
  32. 32.
    Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276:8836–8840PubMedCrossRefGoogle Scholar
  33. 33.
    Ramalho AC, Couttet P, Baudoin C, et al. (2002) Estradiol and raloxifene decrease the formation of multinucleate cells in human bone marrow cultures. Eur Cytokine Netw 13:39–45PubMedGoogle Scholar
  34. 34.
    Sorensen MG, Henriksen K, Dziegiel MH, Tanko LB, Karsdal MA (2006) Estrogen directly attenuates human osteoclastogenesis, but has no effect on resorption by mature osteoclasts. DNA Cell Biol 25:475–483PubMedCrossRefGoogle Scholar
  35. 35.
    Kameda T, Mano H, Yuasa T, et al. (1997) Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186:489–495PubMedCrossRefGoogle Scholar
  36. 36.
    Rissanen JP, Suutari S, Ylönen S, Baugh M, Long C, Halleen JM (2005) The ratio of osteoclast activity/osteoclast number (CTX/TRACP 5b) improves the interpretation of the effects of anti-resorptive treatment in human osteoclast cultures. J Bone Miner Res 20(Suppl 1):S256Google Scholar
  37. 37.
    Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K (2007) Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 22:487–494PubMedCrossRefGoogle Scholar
  38. 38.
    Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA (2007) Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 18:681–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jukka P. Rissanen
    • 1
    Email author
  • Mari I. Suominen
    • 1
  • Zhiqi Peng
    • 1
  • Jussi M. Halleen
    • 1
  1. 1.Pharmatest Services Ltd.TurkuFinland

Personalised recommendations