Calcified Tissue International

, Volume 81, Issue 6, pp 430–441 | Cite as

Decreased Bone Mineral Density Is Correlated with Increased Subclinical Atherosclerosis in Older, but not Younger, Mexican American Women and Men: The San Antonio Family Osteoporosis Study

  • John R. ShafferEmail author
  • Candace M. Kammerer
  • David L. Rainwater
  • Daniel H. O’Leary
  • Jan M. Bruder
  • Richard L. Bauer
  • Braxton D. Mitchell


An association has been reported between cardiovascular disease (CVD) and osteoporosis, perhaps attributable to the presence of common risk factors. To assess this possibility, we measured areal bone mineral density (BMD) and carotid artery intimal medial thickness (IMT), a measure of preclinical atherosclerosis, in 535 women and 335 men from the San Antonio Family Osteoporosis Study. Variance decomposition methods were used to determine whether cross-sectional measures of areal BMD (measured by dual-energy X-ray absorptiometry) of the total hip, spine, and forearm were correlated with IMT, serum lipids, and/or C-reactive protein (CRP), a marker of inflammation, after accounting for known environmental factors. We observed significant inverse correlations of IMT and BMD at all bone sites in women >60 years of age (P < 0.001) and modest positive correlations (not significant) of IMT on hip BMD (P < 0.1) in women <60 years of age. Similarly, we observed negative correlations between IMT and forearm BMD in men >60 years of age (P < 0.001) and positive correlations in men <60 years of age (P = 0.05). Variation in risk factors for CVD, including serum levels of low- and high-density lipoprotein cholesterol, low-density lipoprotein particle size, triglycerides, paraoxonase 1 activity, and CRP did not account for the relationship between BMD and IMT in either older or younger men or women. In summary, our results demonstrate that decreased BMD is correlated with increased IMT in older (but not younger) Mexican American men and women, independent of serum CVD risk factors.


Osteoporosis Atherosclerosis Cardiovascular disease Bone mineral density Arterial intimal medial thickness 



We are deeply grateful for the cooperation of the families participating in the SAFOS. We also thank two anonymous reviewers for their thoughtful comments. This work was supported by research grants RO1-AR43351 and PO1-HL45522 awarded by the National Institutes of Health. Support for the Frederic C. Bartter General Clinical Research Center was made available by Clinical National Institutes of Health grant MO1-RR-01346.


  1. 1.
    Browner WS, Pressman AR, Nevitt MC, Cummings SR (1996) Mortality following fractures in older women. The study of osteoporotic fractures. Arch Intern Med 156:1521–1525PubMedCrossRefGoogle Scholar
  2. 2.
    von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278PubMedCrossRefGoogle Scholar
  3. 3.
    Boukhris R, Becker KL (1972) Calcification of the aorta and osteoporosis. A roentgenographic study. JAMA 219:1307–1311PubMedCrossRefGoogle Scholar
  4. 4.
    Jie KG, Bots ML, Vermeer C, Witteman JC, Grobbee DE (1996) Vitamin K status and bone mass in women with and without aortic atherosclerosis: a population-based study. Calcif Tissue Int 59:352–356PubMedCrossRefGoogle Scholar
  5. 5.
    Samelson EJ, Kiel DP, Broe KE, Zhang Y, Cupples LA, Hannan MT, Wilson PW, Levy D, Williams SA, Vaccarino V (2004) Metacarpal cortical area and risk of coronary heart disease: the Framingham Study. Am J Epidemiol 159:589–595PubMedCrossRefGoogle Scholar
  6. 6.
    Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H (2007) Vascular calcification and osteoporosis—from clinical observation towards molecular understanding. Osteoporos Int 18:251–259PubMedCrossRefGoogle Scholar
  7. 7.
    Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PW (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68:271–276PubMedCrossRefGoogle Scholar
  8. 8.
    Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687PubMedGoogle Scholar
  9. 9.
    Whitney C, Warburton DE, Frohlich J, Chan SY, McKay H, Khan K (2004) Are cardiovascular disease and osteoporosis directly linked? Sports Med 34:779–807PubMedCrossRefGoogle Scholar
  10. 10.
    Jorgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160:549–556PubMedCrossRefGoogle Scholar
  11. 11.
    Farhat GN, Strotmeyer ES, Newman AB, Sutton-Tyrrell K, Bauer DC, Harris T, Johnson KC, Taaffe DR, Cauley JA (2006) Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 79:102–111PubMedCrossRefGoogle Scholar
  12. 12.
    Pennisi P, Signorelli SS, Riccobene S, Celotta G, Di Pino L, La Malfa T, Fiore CE (2004) Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int 15:389–395PubMedCrossRefGoogle Scholar
  13. 13.
    Parhami F, Garfinkel A, Demer LL (2000) Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol 20:2346–2348PubMedGoogle Scholar
  14. 14.
    Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J, Battaglia E (2004) Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int 74:136–142PubMedCrossRefGoogle Scholar
  15. 15.
    Brownbill RA, Ilich JZ (2006) Lipid profile and bone paradox: higher serum lipids are associated with higher bone mineral density in postmenopausal women. J Womens Health 15:261–270CrossRefGoogle Scholar
  16. 16.
    Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, Chihara K (2002) Plasma lipids and osteoporosis in postmenopausal women. Endocr J 49:211–217PubMedCrossRefGoogle Scholar
  17. 17.
    Samelson EJ, Cupples LA, Hannan MT, Wilson PW, Williams SA, Vaccarino V, Zhang Y, Kiel DP (2004) Long-term effects of serum cholesterol on bone mineral density in women and men: the Framingham Osteoporosis Study. Bone 34:557–561PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards CJ, Hart DJ, Spector TD (2000) Oral statins and increased bone-mineral density in postmenopausal women. Lancet 355:2218–2219PubMedCrossRefGoogle Scholar
  19. 19.
    Chan KA, Andrade SE, Boles M, Buist DS, Chase GA, Donahue JG, Goodman MJ, Gurwitz JH, LaCroix AZ, Platt R (2000) Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet 355:2185–2188PubMedCrossRefGoogle Scholar
  20. 20.
    Hodis HN, Mack WJ, LaBree L, Selzer RH, Liu C, Liu C, Alaupovic P, Kwong-Fu H, Azen SP (1996) Reduction in carotid arterial wall thickness using lovastatin and dietary therapy: a randomized controlled clinical trial. Ann Intern Med 124:548–556PubMedGoogle Scholar
  21. 21.
    Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ (1998) Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339:1972–1978PubMedCrossRefGoogle Scholar
  22. 22.
    Yamada Y, Ando F, Niino N, Miki T, Shimokata H (2003) Association of polymorphisms of paraoxonase 1 and 2 genes, alone or in combination, with bone mineral density in community-dwelling Japanese. J Hum Genet 48:469–475PubMedCrossRefGoogle Scholar
  23. 23.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143PubMedCrossRefGoogle Scholar
  24. 24.
    Schett G, Redlich K, Smolen J (2006) Inflammation-induced bone loss in the rheumatic diseases. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th ed. American Society for Bone and Mineral Research, Durham, NC, pp 310–313Google Scholar
  25. 25.
    Kipen Y, Briganti E, Strauss B, Will R, Littlejohn G, Morand E (1999) Three year follow-up of bone mineral density change in premenopausal women with systemic lupus erythematosus. J Rheumatol 26:310–317PubMedGoogle Scholar
  26. 26.
    Uaratanawong S, Deesomchoke U, Lertmaharit S, Uaratanawong S (2003) Bone mineral density in premenopausal women with systemic lupus erythematosus. J Rheumatol 30:2365–2368PubMedGoogle Scholar
  27. 27.
    Van Dyke TE, Serhan CN (2003) Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J Dent Res 82:82–90PubMedGoogle Scholar
  28. 28.
    Haaber AB, Rosenfalck AM, Hansen B, Hilsted J, Larsen S (2000) Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency. Int J Pancreatol 27:21–27PubMedGoogle Scholar
  29. 29.
    Mann ST, Stracke H, Lange U, Klor HU, Teichmann J (2003) Alterations of bone mineral density and bone metabolism in patients with various grades of chronic pancreatitis. Metabolism 52:579–585PubMedCrossRefGoogle Scholar
  30. 30.
    Moran CE, Sosa EG, Martinez SM, Geldern P, Messina D, Russo A, Boerr L, Bai JC (1997) Bone mineral density in patients with pancreatic insufficiency and steatorrhea. Am J Gastroenterol 92:867–871PubMedGoogle Scholar
  31. 31.
    Bernstein CN, Leslie WD, Taback SP (2003) Bone density in a population-based cohort of premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol 98:1094–1100PubMedCrossRefGoogle Scholar
  32. 32.
    Paton NI, Macallan DC, Griffin GE, Pazianas M (1997) Bone mineral density in patients with human immunodeficiency virus infection. Calcif Tissue Int 61:30–32PubMedCrossRefGoogle Scholar
  33. 33.
    Glesby MJ (2003) Bone disorders in human immunodeficiency virus infection. Clin Infect Dis 37 Suppl 2:S91–S95Google Scholar
  34. 34.
    Kammerer CM, Dualan AA, Samollow PB, Perisse AR, Bauer RL, MacCluer JW, O’Leary DH, Mitchell BD (2004) Bone mineral density, carotid artery intimal medial thickness, and the vitamin D receptor BsmI polymorphism in Mexican American women. Calcif Tissue Int 75:292–298PubMedCrossRefGoogle Scholar
  35. 35.
    Barengolts EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV (1998) Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 62:209–213PubMedCrossRefGoogle Scholar
  36. 36.
    Skoglund-Andersson C, Tang R, Bond MG, de Faire U, Hamsten A, Karpe F (1999) LDL particle size distribution is associated with carotid intima-media thickness in healthy 50-year-old men. Arterioscler Thromb Vasc Biol 19:2422–2430PubMedGoogle Scholar
  37. 37.
    Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST (2005) The paraoxonase gene family and atherosclerosis. Free Radic Biol Med 38:153–163PubMedCrossRefGoogle Scholar
  38. 38.
    Ganesan K, Teklehaimanot S, Tran TH, Asuncion M, Norris K (2005) Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females. J Natl Med Assoc 97:329–333PubMedGoogle Scholar
  39. 39.
    Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL (2003) Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone 33:839–846PubMedCrossRefGoogle Scholar
  40. 40.
    Warnick GR, Benderson J, Albers JJ (1982) Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem 28:1379–1388PubMedGoogle Scholar
  41. 41.
    Demacker PN, Hijmans AG, Brenninkmeijer BJ, Jansen AP, van ‘t Laar A (1984) Five methods for determining low-density lipoprotein cholesterol compared. Clin Chem 30:1797–1800PubMedGoogle Scholar
  42. 42.
    Demacker PN, Toenhake-Dijkstra H, de Rijke YB, Stalenhoef AF, Stuyt PM, Willems HL (1996) On the presumed inaccuracy of the Friedewald formula in hypertriglyceridemic plasma: a role for imprecise analysis? Clin Chem 42:1491–1494PubMedGoogle Scholar
  43. 43.
    Rainwater DL, Moore PH Jr, Shelledy WR, Dyer TD, Slifer SH (1997) Characterization of a composite gradient gel for the electrophoretic separation of lipoproteins. J Lipid Res 38:1261–1266PubMedGoogle Scholar
  44. 44.
    Macy EM, Hayes TE, Tracy RP (1997) Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications. Clin Chem 43:52–58PubMedGoogle Scholar
  45. 45.
    Sakkinen PA, Macy EM, Callas PW, Cornell ES, Hayes TE, Kuller LH, Tracy RP (1999) Analytical and biologic variability in measures of hemostasis, fibrinolysis, and inflammation: assessment and implications for epidemiology. Am J Epidemiol 149:261–267PubMedGoogle Scholar
  46. 46.
    Shaffer JR, Kammerer CM, Rainwater DL, O’Leary DH, Bauer RL, Mitchell BD (2004) Relationship between bone mineral density and cardiovascular disease differs by sex. In: The American Society of Human Genetics, 54th Annual Meeting, (Abstracts) Toronto, Canada 54:511Google Scholar
  47. 47.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211PubMedCrossRefGoogle Scholar
  48. 48.
    Burger H, van Daele PL, Odding E, Valkenburg HA, Hofman A, Grobbee DE, Schutte HE, Birkenhager JC, Pols HA (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum 39:81–86PubMedCrossRefGoogle Scholar
  49. 49.
    Smith JA, Vento JA, Spencer RP, Tendler BE (1999) Aortic calcification contributing to bone densitometry measurement. J Clin Densitom 2:181–183PubMedCrossRefGoogle Scholar
  50. 50.
    Zmuda JM, Cauley JA, Glynn NW, Finkelstein JS (2000) Posterior–anterior and lateral dual-energy X-ray absorptiometry for the assessment of vertebral osteoporosis and bone loss among older men. J Bone Miner Res 15:1417–1424PubMedCrossRefGoogle Scholar
  51. 51.
    Verit FF, Celik H, Yazgan P, Erel O, Geyikli I (2006) Paraoxonase-1 activity as a marker of atherosclerosis is not associated with low bone mineral density in healthy postmenopausal women. Arch Gynecol Obstet 275:353–359PubMedCrossRefGoogle Scholar
  52. 52.
    Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tanko LB (2006) Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int 18:505–512PubMedCrossRefGoogle Scholar
  53. 53.
    Demer LL (2002) Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int J Epidemiol 31:737–741PubMedCrossRefGoogle Scholar
  54. 54.
    Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12:683–690PubMedCrossRefGoogle Scholar
  55. 55.
    Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802PubMedCrossRefGoogle Scholar
  56. 56.
    Soper DS (2007) Post-hoc statistical power calculator. Free Statistics Calculators (online software).
  57. 57.
    Vogt MT, Cauley JA, Kuller LH, Nevitt MC (1997) Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J Bone Miner Res 12:283–289PubMedCrossRefGoogle Scholar
  58. 58.
    Tanko LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20PubMedCrossRefGoogle Scholar
  59. 59.
    Hofbauer LC, Schoppet M (2001) Osteoprotegerin: a link between osteoporosis and arterial calcification? Lancet 358:257–259PubMedCrossRefGoogle Scholar
  60. 60.
    Schoppet M, Preissner KT, Hofbauer LC (2002) RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol 22:549–553PubMedCrossRefGoogle Scholar
  61. 61.
    Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedGoogle Scholar
  62. 62.
    Arko B, Prezelj J, Kocijancic A, Komel R, Marc J (2005) Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas 51:270–279PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • John R. Shaffer
    • 1
    Email author
  • Candace M. Kammerer
    • 1
  • David L. Rainwater
    • 2
  • Daniel H. O’Leary
    • 3
  • Jan M. Bruder
    • 4
  • Richard L. Bauer
    • 4
  • Braxton D. Mitchell
    • 5
  1. 1.Department of Human GeneticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghUSA
  2. 2.Southwest Foundation for Biomedical ResearchSan AntonioUSA
  3. 3.Department of RadiologyTufts University School of MedicineBostonUSA
  4. 4.University of Texas Health Science CenterSan AntonioUSA
  5. 5.Division of Endocrinology, Diabetes and NutritionUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations