Calcified Tissue International

, Volume 81, Issue 4, pp 294–304 | Cite as

Fuzzy Logic Structure Analysis of Trabecular Bone of the Calcaneus to Estimate Proximal Femur Fracture Load and Discriminate Subjects with and without Vertebral Fractures using High-Resolution Magnetic Resonance Imaging at 1.5 T and 3 T

  • Priyesh V. Patel
  • Felix Eckstein
  • Julio Carballido-Gamio
  • Catherine Phan
  • Maiko Matsuura
  • Eva-Maria Lochmüller
  • Sharmila Majumdar
  • Thomas M. Link
Article

Abstract

Newly developed fuzzy logic-derived structural parameters were used to characterize trabecular bone architecture in high-resolution magnetic resonance imaging (HR-MRI) of human cadaver calcaneus specimens. These parameters were compared to standard histomorphological structural measures and analyzed concerning performance in discriminating vertebral fracture status and estimating proximal femur fracture load. Sets of 60 sagittal 1.5 T and 3.0 T HR-MRI images of the calcaneus were obtained in 39 cadavers using a fast gradient recalled echo sequence. Structural parameters equivalent to bone histomorphometry and fuzzy logic-derived parameters were calculated using two chosen regions of interest. Calcaneal, spine, and hip bone mineral density (BMD) measurements were also obtained. Fracture status of the thoracic and lumbar spine was assessed on lateral radiographs. Finally, mechanical strength testing of the proximal femur was performed. Diagnostic performance in discriminating vertebral fracture status and estimating femoral fracture load was calculated using regression analyses, two-tailed t-tests of significance, and receiver operating characteristic (ROC) analyses. Significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters (r up to 0.92). Correlations between histomorphological or fuzzy logic parameters and calcaneal BMD were mostly significant (r up to 0.78). ROC analyses demonstrated that standard structural parameters were able to differentiate persons with and without vertebral fractures (area under the curve [AZ] up to 0.73). However, none of the parameters obtained in the 1.5-T images and none of the fuzzy logic parameters discriminated persons with and without vertebral fractures. Significant correlations were found between fuzzy or structural parameters and femoral fracture load. Using multiple regression analysis, none of the structural or fuzzy parameters were found to add discriminative value to BMD alone. In summary significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters. However, fuzzy logic-based calcaneal parameters were not well suited for vertebral fracture discrimination. Although significant correlations were found between fuzzy or structural parameters and femoral fracture load, multiple regression analysis showed limited improvement for estimating femoral failure load in addition to femoral BMD alone. Local femoral measurements are still needed to estimate femoral bone strength. Overall, parameters obtained at 3.0 T performed better than those at 1.5 T.

Keywords

Bone Calcaneus Osteoporosis Fuzzy logic Trabecular 

References

  1. 1.
    Kleerekoper J, Villanueva A, Stanciu J (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597PubMedCrossRefGoogle Scholar
  2. 2.
    Ross P, Davis J, Wasnich R, Vogel J (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Cacif Int Tissue 46:149–161CrossRefGoogle Scholar
  3. 3.
    Link T, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof I, Glueer C, Adams J (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788PubMedCrossRefGoogle Scholar
  4. 4.
    Stenstrom M, Olander B, Lehto-Axtelius D, Madsen J, Nordsletten L, Carlsson G (2000) Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297PubMedCrossRefGoogle Scholar
  5. 5.
    Wigderowitz C, Paterson C, Dashti H, McGurty D, Rowley D (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11:840–846PubMedCrossRefGoogle Scholar
  6. 6.
    Link T, Majumdar S, Augat P, Lin J, Newitt D, Lu Y, Lane N, Genant H (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRefGoogle Scholar
  7. 7.
    Link T, Majumdar S, Lin J, Newitt D, Augat P, Ouyang X, Mathur A, Genant H (1998) A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 13:122–132PubMedCrossRefGoogle Scholar
  8. 8.
    Majumdar S, Link T, Augat P, Lin J, Newitt D, Lane N, Genant H (1999) Trabecular bone architecture in the distal radius using MR imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–239PubMedCrossRefGoogle Scholar
  9. 9.
    Wehrli F, Hwang S, Ma J, Song H, Ford J, Haddad J (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357PubMedGoogle Scholar
  10. 10.
    Wehrli F, Gomberg B, Saha P, Song H, Hwang S, Snyder P (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531PubMedCrossRefGoogle Scholar
  11. 11.
    Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, Eckstein F, Majumdar S, Link TM (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 239:488–496PubMedCrossRefGoogle Scholar
  12. 12.
    Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385PubMedCrossRefGoogle Scholar
  13. 13.
    Link T, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, Majumdar S (2003) High resolution MRI versus multislice spiral CT – which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671PubMedGoogle Scholar
  14. 14.
    Vieth V, Link T, Lotter A, Persigehl T, Newitt D, Filler T, Heindel W, Majumdar S (2001) Does the trabecular structure depicted by high resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 36:210–217PubMedCrossRefGoogle Scholar
  15. 15.
    Issever AS, Vieth V, Lotter A, Meier N, Laib A, Newitt D, Majumdar S, Link TM (2002) Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 9:1395–1406PubMedCrossRefGoogle Scholar
  16. 16.
    Gomberg BR, Saha PK, Song HK, Hwang SN, Wehrli FW (2000) Topological analysis of trabecular bone MR images. IEEE Trans Med Imaging 19:166–174PubMedCrossRefGoogle Scholar
  17. 17.
    Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276PubMedCrossRefGoogle Scholar
  18. 18.
    Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239PubMedCrossRefGoogle Scholar
  19. 19.
    Pothuaud L, Laib A, Levitz P, Benhamou CL, Majumdar S (2002) Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography. J Bone Miner Res 17:1883–1895PubMedCrossRefGoogle Scholar
  20. 20.
    Majumdar S (1994) Analysis of trabecular bone structure in the distal radius using high-resolution MRI. Eur Radiol 4:517–524CrossRefGoogle Scholar
  21. 21.
    Carballido-Gamio J, Phan C, Link TM, Majumdar S (2006) Characterization of trabecular bone structure from high-resolution magnetic resonance images using fuzzy logic. Magn Reson Imaging 24:1023–1029PubMedCrossRefGoogle Scholar
  22. 22.
    Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227:708–717PubMedCrossRefGoogle Scholar
  23. 23.
    Boutry N, Cortet B, Chappard D, Dubois P, Demondion X, Marchandise X, Cotten A (2004) Bone structure of the calcaneus: analysis with magnetic resonance imaging and correlation with histomorphometric study. Osteoporos Int 15:827–833PubMedCrossRefGoogle Scholar
  24. 24.
    Link TM, Bauer J, Kollstedt A, Stumpf I, Hudelmaier M, Settles M, Majumdar S, Lochmuller EM, Eckstein F (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497PubMedCrossRefGoogle Scholar
  25. 25.
    Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408PubMedCrossRefGoogle Scholar
  26. 26.
    Cortet B, Dubois P, Boutry N, Palos G, Cotten A, Marchandise X (2002) Computed tomography image analysis of the calcaneus in male osteoporosis. Osteoporos Int 13:33–41PubMedCrossRefGoogle Scholar
  27. 27.
    Herlidou S, Grebe R, Grados F, Leuyer N, Fardellone P, Meyer ME (2004) Influence of age and osteoporosis on calcaneus trabecular bone structure: a preliminary in vivo MRI study by quantitative texture analysis. Magn Reson Imaging 22:237–243PubMedCrossRefGoogle Scholar
  28. 28.
    Rupprecht M, Pogoda P, Mumme M, Rueger JM, Puschel K, Amling M (2006) Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res 24:664–674PubMedCrossRefGoogle Scholar
  29. 29.
    Patel PV, Prevrhal S, Bauer JS, Phan C, Eckstein F, Lochmuller EM, Majumdar S, Link TM (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253PubMedCrossRefGoogle Scholar
  30. 30.
    Gefen A, Seliktar R (2004) Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus. Med Eng Phys 26:119–129PubMedCrossRefGoogle Scholar
  31. 31.
    Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118PubMedCrossRefGoogle Scholar
  32. 32.
    Parfitt M, Drezner M, Glorieux F, Kanis J, Malluche H, Meunier P, Ott S, Recker R (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedGoogle Scholar
  33. 33.
    Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17PubMedCrossRefGoogle Scholar
  34. 34.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRefGoogle Scholar
  35. 35.
    Eckstein F, Lochmuller EM, Lill CA, Kuhn V, Schneider E, Delling G, Muller R (2002) Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 17:162–171PubMedCrossRefGoogle Scholar
  36. 36.
    Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmuller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19:379–385PubMedCrossRefGoogle Scholar
  37. 37.
    Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638PubMedCrossRefGoogle Scholar
  38. 38.
    Lochmuller EM, Burklein D, Kuhn V, Glaser C, Muller R, Gluer CC, Eckstein F (2002) Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31:77–84PubMedCrossRefGoogle Scholar
  39. 39.
    Yung PS, Lai YM, Tung PY, Tsui HT, Wong CK, Hung VW, Qin L (2005) Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br J Sports Med 39:547–551PubMedCrossRefGoogle Scholar
  40. 40.
    Jergas M, Gluer CC (1997) Assessment of fracture risk by bone density measurements. Semin Nucl Med 27:261–275PubMedCrossRefGoogle Scholar
  41. 41.
    Ryan PJ (1997) Overview of role of BMD measurements in managing osteoporosis. Semin Nucl Med 27:197–209PubMedCrossRefGoogle Scholar
  42. 42.
    Lochmuller EM, Zeller JB, Kaiser D, Eckstein F, Landgraf J, Putz R, Steldinger R (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598PubMedCrossRefGoogle Scholar
  43. 43.
    Lochmuller EM, Miller P, Burklein D, Wehr U, Rambeck W, Eckstein F (2000) In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 11:361–367PubMedCrossRefGoogle Scholar
  44. 44.
    Lochmuller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216PubMedCrossRefGoogle Scholar
  45. 45.
    Lochmuller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18:906–912PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Priyesh V. Patel
    • 1
    • 2
  • Felix Eckstein
    • 3
    • 4
  • Julio Carballido-Gamio
    • 1
  • Catherine Phan
    • 1
  • Maiko Matsuura
    • 3
  • Eva-Maria Lochmüller
    • 5
  • Sharmila Majumdar
    • 1
  • Thomas M. Link
    • 1
  1. 1.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Chicago Medical SchoolNorth ChicagoUSA
  3. 3.Musculoskeletal Research Group, Institute of AnatomyLudwig-Maximilians-UniversitätMunichGermany
  4. 4.Institute of Anatomy and Musculoskeletal ResearchParacelsus Medical Private UniversitySalzburgAustria
  5. 5.1st Gynecology HospitalLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations