Calcified Tissue International

, Volume 81, Issue 3, pp 232–239

Sequential Treatment with Intermittent Low-Dose Human Parathyroid Hormone (1-34) and Bisphosphonate Enhances Large-Size Skeletal Reconstruction by Vascularized Bone Transplantation

  • Takahiro Hashimoto
  • Mitsunori Shigetomi
  • Teruyasu Ohno
  • Tsunemitsu Matsunaga
  • Keiichi Muramatsu
  • Hiroshi Tanaka
  • Toshihiro Sugiyama
  • Toshihiko Taguchi


Vascularized bone transplantation enables reconstruction of large skeletal defects, but this process needs a long time. Since short-term intermittent parathyroid hormone (PTH) enhances rat fracture healing, we investigated the effects of 4-week intermittent low-dose (10 μg/kg/day) or high-dose (100 μg/kg/day) PTH followed by 4-week vehicle, low-dose or high-dose intermittent PTH, or zoledronic acid (ZOL, 2 μg/kg/week), a potent bisphosphonate, on large skeletal reconstruction by vascularized tibial grafting in rats. Compared to 8-week vehicle, 8-week low-dose PTH did not significantly increase the serum osteocalcin level as well as the urinary deoxypyridinoline level, while 4-week low-dose or high-dose PTH followed by 4-week ZOL decreased both of these levels. Eight-week PTH increased the bone mass of the graft and strength of the reconstructed skeleton in a dose-dependent manner; notably, the reconstructed skeleton showed an obviously higher response to PTH compared to the contralateral nonoperated femur. In contrast, 4-week PTH followed by 4-week vehicle reduced these effects and caused local bone loss at the host-graft junctions. Four-week PTH followed by 4-week ZOL did not induce such bone loss; however, 4-week high-dose PTH followed by 4-week ZOL caused a large callus in the distal cortical junction. Four-week PTH followed by 4-week ZOL increased the bone mass and strength similarly to 8-week PTH. These preliminary findings suggest, for the first time, that sequential treatment with short-term intermittent low-dose PTH and bisphosphonate as well as long-term intermittent low-dose PTH treatment enhance large skeletal reconstruction by vascularized bone transplantation, though early timing of sequential antiresorptive treatment could result in delay of bone repair.


Skeletal reconstruction Vascularized bone transplantation Parathyroid hormone Bisphosphonate Sequential treatment 


  1. 1.
    Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg 55:533–544PubMedCrossRefGoogle Scholar
  2. 2.
    Doi K, Kawai S, Shigetomi M (1996) Congenital tibial pseudoarthrosis treated with vascularised bone allograft. Lancet 347:970–971PubMedCrossRefGoogle Scholar
  3. 3.
    Wood MB (2007) Free vascularized fibular grafting-25 years’ experience: tips, techniques, and pearls. Orthop Clin North Am 38:1–12PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop AT, Pelzer M (2007) Vascularized bone allotransplantation: current state and implications for future reconstructive surgery. Orthop Clin North Am 38:109–122PubMedCrossRefGoogle Scholar
  5. 5.
    Aspenberg P (2005) Drugs and fracture repair. Acta Orthop 76:741–748PubMedCrossRefGoogle Scholar
  6. 6.
    Simpson AHRW, Mills L, Noble B (2006) The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg Br 88:701–705PubMedCrossRefGoogle Scholar
  7. 7.
    William Axelrad T, Kakar S, Einhorn TA (2007) New technologies for the enhancement of skeletal repair. Injury 38(suppl 1):S49–S62PubMedCrossRefGoogle Scholar
  8. 8.
    Reeve J, Hesp R, Williams D, Hulme P, Klenerman L, Zanelli JM, Darby AJ, Tregear GW, Parsons JA (1976) Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet 1:1035–1038PubMedCrossRefGoogle Scholar
  9. 9.
    Reeve J (2002) Recombinant human parathyroid hormone: osteoporosis is proving amenable to treatment. BMJ 324:435–436PubMedCrossRefGoogle Scholar
  10. 10.
    Tashjian AH Jr, Gagel RF (2006) Teriparatide [human PTH (1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res 21:354–365PubMedCrossRefGoogle Scholar
  11. 11.
    Andreassen TT, Ejersted C, Oxlund H (1999) Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 14:960–968PubMedCrossRefGoogle Scholar
  12. 12.
    Holzer G, Majeska RJ, Lundy MW, Hartke JR, Einhorn TA (1999) Parathyroid hormone enhances fracture healing: a preliminary report. Clin Orthop Relat Res 366:258–263PubMedCrossRefGoogle Scholar
  13. 13.
    Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, Yamazaki M (2002) Mechanisms of the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res 17:2038–2047PubMedCrossRefGoogle Scholar
  14. 14.
    Andreassen TT, Willick GE, Morley P, Whitfield JF (2004) Treatment of parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int 74:351–356PubMedCrossRefGoogle Scholar
  15. 15.
    Komatsubara S, Mori S, Mashiba T, Nonaka K, Seki A, Akiyama T, Miyamoto K, Cao Y, Manabe T, Norimatsu H (2005) Human parathyroid hormone (1-34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone 36:678–687PubMedCrossRefGoogle Scholar
  16. 16.
    Alkhiary YM, Gerstenfeld LC, Krall E, Westmore M, Sato M, Mitlak BH, Einhorn TA (2005) Enhancement of experimental fracture-healing by systemic administration of recombination human parathyroid hormone (PTH 1–34). J Bone Joint Surg Am 87:731–741PubMedCrossRefGoogle Scholar
  17. 17.
    Seebach C, Skripitz R, Andreassen TT, Aspenberg P (2004) Intermittent parathyroid hormone (1-34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats. J Orthop Res 22:472–478PubMedCrossRefGoogle Scholar
  18. 18.
    Skripitz R, Bohling S, Ruther W, Aspenberg P (2005) Stimulation of implant fixation by parathyroid hormone (1–34): a histomorphometric comparison of PMMA cement and stainless steel. J Orthop Res 23:1266–1270PubMedGoogle Scholar
  19. 19.
    Gabet Y, Muller R, Levy J, Dimarchi R, Chorev M, Bab I, Kohavi D (2006) Parathyroid hormone 1-34 enhances titanium implant anchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis. Bone 39:276–282PubMedCrossRefGoogle Scholar
  20. 20.
    Gunness-Hey M, Hock JM (1989) Loss of the anabolic effect of parathyroid hormone on bone after discontinuation of hormone in rats. Bone 10:447–452PubMedCrossRefGoogle Scholar
  21. 21.
    Ejersted C, Oxlund H, Eriksen EF, Andreassen TT (1998) Withdrawal of parathyroid hormone treatment causes rapid resorption of newly formed vertebral cancellous and endocortical bone in old rats. Bone 23:43–52PubMedCrossRefGoogle Scholar
  22. 22.
    Ejersted C, Oxlund H, Andreassen TT (1998) Bisphosphonate maintains parathyroid hormone (1-34)-induced cortical bone mass and mechanical strength in old rats. Calcif Tissue Int 62:316–322PubMedCrossRefGoogle Scholar
  23. 23.
    Rhee Y, Won Y-Y, Baek M-H, Lim S-K (2004) Maintenance of increased bone mass after recombinant human parathyroid hormone (1-84) with sequential zoledronate treatment in ovariectomized rats. J Bone Miner Res 19:931–937PubMedCrossRefGoogle Scholar
  24. 24.
    Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703PubMedCrossRefGoogle Scholar
  25. 25.
    Cranney A, Papanioannou A, Zytaruk N, Hanley D, Adachi J, Goltzman D, Murray T, Hodsman A, for the Clinical Guidelines Committee of Osteoporosis Canada (2006) Parathyroid hormone for the treatment of osteoporosis: a systematic review. CMAJ 175:52–59PubMedGoogle Scholar
  26. 26.
    Reid IR, Brown JP, Burckhardt P, Horowitz Z, Richardson P, Trechsel U, Widmer A, Devogelaer JP, Kaufman JM, Jaeger P, Body JJ, Brandi ML, Broell J, Di Micco R, Genazzani AR, Felsenberg D, Happ J, Hooper MJ, Ittner J, Leb G, Mallmin H, Murray T, Ortolani S, Rubinacci A, Saaf M, Samsioe G, Verbruggen L, Meunier PJ (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346:653–661PubMedCrossRefGoogle Scholar
  27. 27.
    Hornby SB, Evans GP, Hornby SL, Pataki A, Glatt M, Green JR (2003) Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int 72:519–527PubMedCrossRefGoogle Scholar
  28. 28.
    Glatt M, Pataki A, Evans GP, Hornby SB, Green JR (2004) Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. Osteoporos Int 15:707–715PubMedCrossRefGoogle Scholar
  29. 29.
    Crawford BA, Kam C, Pavlovic J, Byth K, Handelsman DJ, Angus PW, McCaughan GW (2006) Zoledronic acid prevents bone loss after liver transplantation: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:239–248PubMedGoogle Scholar
  30. 30.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, for the HORIZON Pivotal Fracture Trial (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822PubMedCrossRefGoogle Scholar
  31. 31.
    Shigetomi M, Doi K, Kuwata N, Muramatsu K, Yamamoto K, Kawai S (1994) Experimental study on vascularized bone allografts for reconstruction of massive bone defects. Microsurgery 15:663–670PubMedCrossRefGoogle Scholar
  32. 32.
    Merida L, Shigetomi M, Ihara K, Tsubone T, Ikeda K, Yamaguchi A, Sugiyama T, Kawai S (2002) Effects of vitamin D analog, 22-oxa-1,25 dihydroxyvitamin D3, on bone reconstruction by vascularized bone allograft. Bone 30:422–427PubMedCrossRefGoogle Scholar
  33. 33.
    Ohno T, Shigetomi M, Ihara K, Matsunaga T, Hashimoto T, Kawano H, Sugiyama T, Kawai S (2003) Skeletal reconstruction by vascularized allogenic bone transplantation: effects of statin in rats. Transplantation 76:869–871PubMedCrossRefGoogle Scholar
  34. 34.
    Tsubone T, Shigetomi M, Ihara K, Ikeda K, Merida L, Ohno T, Sugiyama T, Kawai S (2003) Hypertrophy of vascularized bone isograft in rats treated with cyclosporine A. Calcif Tissue Int 73:393–399PubMedCrossRefGoogle Scholar
  35. 35.
    Ikeda K, Shigetomi M, Ihara K, Tsubone T, Hashimoto T, Kawano H, Sugiyama T, Kawai S (2004) Effects of cessation of immunosuppression on skeleton reconstructed by vascularized bone allograft in rats. J Orthop Res 22:388–394PubMedCrossRefGoogle Scholar
  36. 36.
    Oxlund H, Ortoft G, Thomsen JS, Danielsen CC, Ejersted C, Andreassen TT (2006) The anabolic effect of PTH on bone is attenuated by simultaneous glucocorticoid treatment. Bone 39:244–252PubMedCrossRefGoogle Scholar
  37. 37.
    Nakazawa T, Nakajima A, Shinomi K, Moriya H, Einhorn TA, Yamazaki M (2005) Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone 37:711–719PubMedCrossRefGoogle Scholar
  38. 38.
    Mori S (2003) Fracture healing with anti-resorptive agents. J Musculoskelet Neuronal Interact 3:314–316PubMedGoogle Scholar
  39. 39.
    Morris CD, Einhorn TA (2005) Bisphosphonates in orthopaedic surgery. J Bone Joint Surg Am 87:1609–1618PubMedCrossRefGoogle Scholar
  40. 40.
    Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301PubMedCrossRefGoogle Scholar
  41. 41.
    Armamento-Villareal R, Napoli N, Panwar V, Novack D (2006) Suppressed bone turnover during alendronate therapy for high-turnover osteoporosis. N Engl J Med 355:2048–2050PubMedCrossRefGoogle Scholar
  42. 42.
    Li J, Mori S, Kaji Y, Kawanishi J, Akiyama T, Norimatsu H (2000) Concentration of bisphosphonate (incadronate) in callus area and its effects on fracture healing in rats. J Bone Miner Res 15:2042–2051PubMedCrossRefGoogle Scholar
  43. 43.
    Li J, Mori S, Kaji Y, Mashiba T, Kawanishi J, Norimatsu H (1999) Effect of bisphosphonate (incadronate) on fracture healing of long bones in rats. J Bone Miner Res 14:969–979PubMedCrossRefGoogle Scholar
  44. 44.
    Li CY, Mori S, Li JL, Kaji Y, Akiyama T, Kawanishi J, Norimatsu H (2001) Long-term effect of incadronate disodium (YM-175) on fracture healing of femoral shaft in growing rats. J Bone Miner Res 16:429–436PubMedCrossRefGoogle Scholar
  45. 45.
    Cao Y, Mori S, Mashiba T, Westmore MS, Ma L, Sato M, Akiyama T, Shi L, Komatsubara S, Miyamoto K, Norimatsu H (2002) Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 17:2237–2246PubMedCrossRefGoogle Scholar
  46. 46.
    Matsunaga T, Shigetomi M, Hashimoto T, Suzuki H, Gondo T, Tanaka H, Sugiyama T, Taguchi T (2007) Effects of bisphosphonate treatment on bone repair under immunosuppression using cyclosporine A in adult rats. Osteoporos Int. doi:10.1007/s00198-007-0387-zGoogle Scholar
  47. 47.
    Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, Seki A, Sun Y-X, Yamamoto T (2007) Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 40:1475–1482PubMedCrossRefGoogle Scholar
  48. 48.
    Chalidis B, Tzioupis C, Tsiridis E, Giannoudis PV (2007) Enhancement of fracture healing with parathyroid hormone: preclinical studies and potential clinical applications. Expert Opin Investig Drugs 16:441–449PubMedCrossRefGoogle Scholar
  49. 49.
    Civitelli R, Napoli N, Armamento-Villareal R (2007) Use of intravenous bisphosphonates in osteoporosis. Curr Osteoporos Rep 5:8–13PubMedCrossRefGoogle Scholar
  50. 50.
    Compston J (2007) Treatments for osteoporosis: looking beyond the HORIZON. N Engl J Med 356:1878–1880PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Takahiro Hashimoto
    • 1
  • Mitsunori Shigetomi
    • 1
  • Teruyasu Ohno
    • 1
  • Tsunemitsu Matsunaga
    • 1
  • Keiichi Muramatsu
    • 1
  • Hiroshi Tanaka
    • 1
  • Toshihiro Sugiyama
    • 1
    • 2
  • Toshihiko Taguchi
    • 1
  1. 1.Department of Orthopedic SurgeryYamaguchi University School of MedicineYamaguchiJapan
  2. 2.Department of Veterinary Basic SciencesThe Royal Veterinary College, University of LondonLondonUK

Personalised recommendations