Calcified Tissue International

, Volume 80, Issue 4, pp 233–243 | Cite as

Serum from Postmenopausal Women Directs Differentiation of Human Clonal Osteoprogenitor Cells from an Osteoblastic toward an Adipocytic Phenotype

  • Bradley StringerEmail author
  • Rachel Waddington
  • Alastair Sloan
  • Adam Houghton
  • Mike Stone
  • Graham Russell
  • George Foster


A consistent observation in osteoporosis is bone volume reduction accompanied by increased marrow adipose tissue. No single cause linking the two phenomena has yet been identified. In a human progenitor cell clone (hOP 7) derived from bone marrow, however, we have demonstrated that rabbit serum can direct differentiation away from an osteoblast lineage to one of adipocytes. We now report on whether human serum has a similar effect. Serum was collected from 10 pre- and 10 postmenopausal women and from the 10 postmenopausal women before and following 6-week hormone replacement therapy (HRT). hOP 7 cells were cultured with the various sera, and after 7-14 days adipocytogenesis was determined by oil red O staining and lipoprotein lipase (LPL) and glycerol 3-phosphate dehydrogenase (G3PDH) expression. Incubation with 10% premenopausal serum led to labeling of 10.9% of cells (P < 0.05) with oil red O, whereas application of 10% postmenopausal serum led to a much larger effect, 43.5% labeling (P < 0.001 with respect to premenopausal serum). Oil red O positivity was accompanied by loss of type I collagen expression and increased LPL and G3PDH expression. HRT did not reverse the adipocytogenic effect of postmenopausal serum. In conclusion, serum from postmenopausal women contains factors that steer hOP 7 bone progenitor cells toward an adipocytic phenotype, irrespective of HRT. The study suggests a role for serum factors in the development of fatty marrow in postmenopausal osteoporosis.


Adipocyte Differentiation Menopause Osteoblast Serum 



We are grateful to the Arthritis Research Campaign, the Nuffield Foundation, the University of Sheffield, and Cardiff University for supporting this work.


  1. 1.
    Meunier PJ, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154PubMedCrossRefGoogle Scholar
  2. 2.
    Burkhardt R, Kettner G, Bohm W, Schmidmeir M, Schlag R, Frisch B, MaIlman B, Eisenmenger W, Gilg TH (1987) Changes in trabecular bone, haematopoiesis and bone marrow vessels in aplastic anaemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164PubMedCrossRefGoogle Scholar
  3. 3.
    Parfitt AM (1990) Bone forming cells in clinical conditions. In: Hall BK (ed), Bone, A Treatise. The Osteoblast and Osteocyte, vol 1. Telford Press, Caldwell, NJ, pp 351–429Google Scholar
  4. 4.
    Justesen J, Stenderup K, Ebbeson EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and with osteoporosis. Biogerontology 2:165–171PubMedCrossRefGoogle Scholar
  5. 5.
    Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698PubMedCrossRefGoogle Scholar
  6. 6.
    Wronski TJ, Walsh CC, Ignaszewski LA (1986) Histological evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7:119–123PubMedCrossRefGoogle Scholar
  7. 7.
    Miniare E, Meunier PJ, Edouard C, Bernard J, Courpron J, Bourret J (1974) Quantitative histological data on disuse osteoporosis. Calcif Tissue Res 17:57–73CrossRefGoogle Scholar
  8. 8.
    Aubin JE, Turksen K, Heersche JNM (1993) Osteoblastic cell lineage. In: Noda M (ed), Cellular and Molecular Biology of Bone. Academic Press, London, pp 1–45Google Scholar
  9. 9.
    Houghton A, Oyajobi BO, Foster GA, Russell RGG, Stringer BMJ (1998) Immortalization of human bone marrow stromal cells by retroviral transduction with a temperature sensitive oncogene: identification of bipotential precursor cells capable of directed differentiation to either an osteoblast or adipocyte phenotype. Bone 22:7–16PubMedCrossRefGoogle Scholar
  10. 10.
    Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMedCrossRefGoogle Scholar
  11. 11.
    Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterisation of conditionally immortalised osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13:205–217PubMedCrossRefGoogle Scholar
  12. 12.
    Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156PubMedCrossRefGoogle Scholar
  13. 13.
    Hu E, Tontonoz P, Spiegeleman BM (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc Natl Acad Sci USA 92:9856–9860PubMedCrossRefGoogle Scholar
  14. 14.
    Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15 Deoxy-12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83:803–812PubMedCrossRefGoogle Scholar
  15. 15.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Reuger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  16. 16.
    Jilka LR, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97: 1732–1740PubMedCrossRefGoogle Scholar
  17. 17.
    Sims NA, Sbatakos G, Chen J-S, Kelz M, Amling M, Nestler E, Baron R (1999) Progressive and pronounced increase in bone mass, osteosclerosis and reduced adipocytes in mice overexpressing delta-fosB, a truncated from of fosB. J Bone Miner Res 14(suppl 1):172Google Scholar
  18. 18.
    Kveiborg M, Sabatakos G, Chiusaroli R, Wu M, Philbrick WM Horne WC, Baron R (2004) DeltaFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms. Mol Cell Biol 24:2820–2830PubMedCrossRefGoogle Scholar
  19. 19.
    Kodama Y, Takeuchi Y, Suzawa M, Fukumoto S, Murayama H, Yamato H, Fujita T, Kurokawa T, Matsumoto T (1998) Reduced expression of interleukin-11 in bone marrow stromal cells of senescence-accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis. J Bone Miner Res 13:1370–1377 PubMedCrossRefGoogle Scholar
  20. 20.
    Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedCrossRefGoogle Scholar
  21. 21.
    Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis. Bone 27:177–184PubMedCrossRefGoogle Scholar
  22. 22.
    Gimble JM, Nuttall ME (2004) Bone and fat: old questions, new insights. Endocrine 23:183–188PubMedCrossRefGoogle Scholar
  23. 23.
    Nuttall ME, Gimble JM (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4:290–294PubMedCrossRefGoogle Scholar
  24. 24.
    Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266PubMedCrossRefGoogle Scholar
  25. 25.
    Dorheim M-A, Sullivan M, Dandapani V, Wu X, Hudson J, Segerini PR, Rosen DM, Aulthouse AL, Gimble JM (1993) Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. J Cell Physiol 154:317–328PubMedCrossRefGoogle Scholar
  26. 26.
    Diascro DD Jr, Vogel RL, Johnson TE, Witherup KM, Pitzenberger SM, Rutledge SJ, Prescott DJ, Rodan GA, Schmidt A (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13:96–106PubMedCrossRefGoogle Scholar
  27. 27.
    Abdallah B, Haack-Sorensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39:181–188PubMedCrossRefGoogle Scholar
  28. 28.
    Ettinger B, Genant HK, Steiger P, Madvig P (1992) Low-dosage 17β-estradiol prevents bone loss in postmenopausal women. Am J Obstet Gynecol 66:479–488Google Scholar
  29. 29.
    Lindsay R, Hart DM, Clark DM (1984) The minimum effective dose of estrogen for prevention of postmenopausal bone loss. Obstet Gynecol 63:759–763PubMedGoogle Scholar
  30. 30.
    Keil DP, Felson DT, Anderson JJ, Wilson PWF, Moskowitz MA (1987) Hip fracture and the use of estrogens in postmenopausal women: the Framingham Study. N Engl J Med 317:1169–1174CrossRefGoogle Scholar
  31. 31.
    Weiss NS, Ure CL, Ballard JH, Williams AR, Daling JR (1980) Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med 303:1195–1198PubMedCrossRefGoogle Scholar
  32. 32.
    Weigratz I, Fink T, Rohr UD, Lang E, Leukel P, Kuhl H (2001) Cross-over comparison of the pharmacokinetics of estradiol during hormone replacement therapy with estradiol valerate or micronized estradiol. Zentralbl Gynakol 123:505–512CrossRefGoogle Scholar
  33. 33.
    Jones KP (1992) Estrogens and progestins: what to use and how to use it. Clin Obstet Gynecol 35:871–873PubMedCrossRefGoogle Scholar
  34. 34.
    Scott RT, Ross B, Anderson C, Archer DF (1991) Pharmacokinetics of percutaneous estradiol: a crossover study using a gel and a transdermal system in comparison with oral micronized estradiol. Obstet Gynecol 77:758–764PubMedGoogle Scholar
  35. 35.
    Nichols KC, Schenkel L, Benson H (1984) 17Beta-estradiol for postmenopausal estrogen replacement therapy. Obstet Gynecol Surv 39:230–245PubMedCrossRefGoogle Scholar
  36. 36.
    Consensus Development Conference (1987) Prophylaxis and treatment of osteoporosis. Br Med J (Clin Res Ed) 295:914–915CrossRefGoogle Scholar
  37. 37.
    Weibel ER (1979) Stereological Methods. Practical Methods for Biological Morphometry, vol 1. Academic Press, LondonGoogle Scholar
  38. 38.
    Weibel ER, Gonzague S, Kistler F, Scherle WF (1966) Practical stereological methods for morphometric cytology. J Cell Biol 30:23–38PubMedCrossRefGoogle Scholar
  39. 39.
    Stringer BM, Wynford-Thomas D, Williams ED (1982) Physical randomisation of tissue architecture – an alternative to systematic sampling. J Microsc 126:179–182PubMedGoogle Scholar
  40. 40.
    Bessey OA, Lowry OH, Brock MF (1946) A method for the rapid determination of alkaline phosphatase with five cubic millilitres of serum. J Biol Chem 164:321–329Google Scholar
  41. 41.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  42. 42.
    Cook HC (1974) Manual of Histological Demonstration Techniques. Butterworths, LondonGoogle Scholar
  43. 43.
    Mackenzie CG, Mackenzie JB, Reiss OK, Wisneski JA (1970) Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation in cultured cells. J Lipid Res 11:571–582PubMedGoogle Scholar
  44. 44.
    Sakaue H, Ogawa W, Nakamura T, Mori T, Nakamura K, Kasuga M (2004) Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 279:39951–39957PubMedCrossRefGoogle Scholar
  45. 45.
    Horton RM, Hoppe BL, Conto Tronconi BM (1994) Ampligrease: Hot Start PCR using petroleum jelly. Biotechniques 16:42–43PubMedGoogle Scholar
  46. 46.
    Cheng S, Yang JW, Rifas L, Zhang S, Avioli LV (1994) Differentiation of human marrow osteogenic cells in vitro: induction of osteoblast penotype by dexamethasone. Endocrinology 134:277–286PubMedCrossRefGoogle Scholar
  47. 47.
    Stringer BMJ, Verhofstad AAJ, Foster GA (1994) Raphe neural cells immortalised with a temperature sensitive oncogene: differentiation by default down an APUD cell lineage. Dev Brain Res 79:267–274CrossRefGoogle Scholar
  48. 48.
    Oyajobi BO, Houghton A, Hatton P, Frazer A, Graveley R, Russell RGG, Stringer BMJ (1998) Expression of type X collagen and matrix calcification in three-dimensional cultures of immortalised temperature-sensitive chondrocytes derived from adult human. J Bone Miner Res 13:432–442PubMedCrossRefGoogle Scholar
  49. 49.
    Stringer BMJ, Phillips I, Gangemi L, Gosal M, Foster GA (2002) Generation of hypertrophic cartilage for bone tissue engineering. Eur Cells Materials 4:5–6 Google Scholar
  50. 50.
    Foster GA, Stringer BMJ (2004) Cell-based therapies for Parkinson’s disease. Drug Discov Today Ther Strat 1:43–49CrossRefGoogle Scholar
  51. 51.
    Stringer BMJ, Waddington R, Sloan A, Phillips I, Telford G, Hughes D, Craig G, Gangemi L, Brook I, Freeman C, Cao X, Gosal M, Smith S, Russell RGG, Foster GA (2006) Bespoke human hypertrophic chondrocytic cell lines provide the osteoinductive signals required for vascularised bone formation. Tissue Eng 13:133–145CrossRefGoogle Scholar
  52. 52.
    Kanis J (1996) Estrogens, the menopause, and osteoporosis. Bone 19:185S–190SPubMedCrossRefGoogle Scholar
  53. 53.
    Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71:36–44PubMedCrossRefGoogle Scholar
  54. 54.
    Abdallah BM, Haack-Sørensena M, Burnsa JS, Elsnaba B, Jakob F, Hoklandc P, Kassem M. (2005) Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene in despite of extensive proliferation. Biochem Biophys Res Commun 326:527–538PubMedCrossRefGoogle Scholar
  55. 55.
    Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83:813–819PubMedCrossRefGoogle Scholar
  56. 56.
    Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90:2160–2164PubMedCrossRefGoogle Scholar
  57. 57.
    Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91:11012–11016PubMedCrossRefGoogle Scholar
  58. 58.
    Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA 102:2340–2345PubMedCrossRefGoogle Scholar
  59. 59.
    Requirand P, Gibert P, Tramini P, Cristol JP, Descomps B (2000) Serum fatty acid imbalance in bone loss: example with periodontal disease. Clin Nutr 19:271–276PubMedCrossRefGoogle Scholar
  60. 60.
    Weaks-Dybvig M, Sanavi F, Zender H, Rifkin BR (1982) The effect of indomethacin on alveolar bone loss in experimental periodontitis. J Periodont Res 17:90–100PubMedCrossRefGoogle Scholar
  61. 61.
    Jeffcoat MK, Williams RC, Wechter WJ, Johnson HG, Kaplan ML, Gandrup JS, Goldhaber P (1986) Flurbiprofen treatment of periodontal disease in beagles. J Periodont Res 21:624–633PubMedCrossRefGoogle Scholar
  62. 62.
    Kornman KS, Blodgett RF, Brunsvold M, Holt SC (1990) Effects of topical applications of meclofenamic acid and ibuprofen on bone loss, subgingival microbiota and gingival PMN response in the Macaca fascicularis. J Periodont Res 25:300–307PubMedCrossRefGoogle Scholar
  63. 63.
    Li KL, Vogel R, Jeffcoat MK, Alfano MC, Smith MA, Collins JG, Offenbacher S (1996) The effect of ketoprofen creams on periodontal disease in rhesus monkeys. J Periodont Res 31:525–532PubMedCrossRefGoogle Scholar
  64. 64.
    Waite JM, Saxton CA, Young A, Wagg BJ, Corbett M (1981) The periodontal status of subjects receiving non-steroidal antiinflammatory drugs. J Periodont Res 16:100–108PubMedCrossRefGoogle Scholar
  65. 65.
    Jeffcoat MK, Williams RC, Ready MS English R, Goldhaber P (1988) Flurbiprofen treatment of human periodontitis effect on alveolar bone height and metabolism. J Periodont Res 23:381–385PubMedCrossRefGoogle Scholar
  66. 66.
    Jeffcoat MK, Williams RC, Reddy M, Wannawisute A, Waite P, Palcanis K, Cogen R, Williams RC, Basch C (1991) Use of digital radiography to demonstrate the potential of naproxen as an adjunct in the treatment of rapidly progressive periodontitis. J Periodont Res 26:415–421PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bradley Stringer
    • 1
    Email author
  • Rachel Waddington
    • 2
  • Alastair Sloan
    • 1
  • Adam Houghton
    • 3
  • Mike Stone
    • 4
  • Graham Russell
    • 5
  • George Foster
    • 6
  1. 1.Department of Oral Surgery, Medicine and PathologyDental School, Cardiff UniversityCardiffUK
  2. 2.Department of Dental Health and Biological SciencesDental School, Cardiff UniversityCardiffUK
  3. 3.Health Care Research CenterProctor and GambleMasonUSA
  4. 4.Llandough HospitalMedical School, Cardiff UniversityCardiffUK
  5. 5.Nuffield Department of Orthopedic SurgeryUniversity of OxfordOxfordUK
  6. 6.School of Biosciences, Cardiff UniversityCardiffUK

Personalised recommendations