Calcified Tissue International

, Volume 80, Issue 4, pp 286–293 | Cite as

Improvement of Bone Quality in Gonad-Intact Middle-Aged Male Rats by Long-Chain n-3 Polyunsaturated Fatty Acid

  • C.-L. Shen
  • J. K. Yeh
  • J. Rasty
  • M.-C. Chyu
  • D. M. Dunn
  • Y. Li
  • B. A. Watkins


The effect of long-chain n-3 polyunsaturated fatty acid (PUFA) on bone measurements was evaluated in gonad-intact middle-aged male rats. Seven rats were killed on day 0 of dietary intervention to determine bone parameters at baseline. Experimental rats (7/group) were fed one of the following lipid treatments (g/kg diet): 167 g safflower oil + 33 g menhaden oil (N6+N3 diet, control), 200 g safflower oil (N6 diet), or 190 menhaden oil + 10 g corn oil (N3 diet). After 20 weeks of dietary treatment, all groups had lower values for peak load and ultimate stiffness in femurs compared to baseline values. Rats fed the N3 diet had the highest values for peak load, ultimate stiffness, and Young’s modulus compared with those fed the N6 and control diets. Compared to baseline, all dietary treatment groups had significantly lower values for trabecular thickness and number in proximal tibia but higher values for trabecular separation and formation rate in proximal tibia and endocortical bone formation rate in tibial shaft. Compared with the control group, rats fed the N3 diet had lower values for formation rate, osteoclast number, and eroded surface in proximal tibia but higher values for periosteal mineral apposition and formation rates in tibia shaft. These findings indicate that a diet rich in long-chain n-3 PUFA mitigate aging-induced loss of bone integrity in intact middle-aged male rats through reducing bone turnover rate by suppressing both bone formation and resorption as a result of a larger net bone volume and modulating endocortical and cancellous bone compartments.


Menhaden oil Histomorphometry Bone mechanical strength Male rat Aging 


  1. 1.
    Rizek RL, Welsh SO, Marston RM, Jackson EM (1973) Chapter 1. In: Perkins EG, Visek WJ (eds), Dietary Fats and Health. American Oil Chemists’ Society, Champaign, IL, pp 13–43Google Scholar
  2. 2.
    Hou JC-H, Zernicke RF, Barnard RJ (1990) High-fat sucrose diet effects on femoral neck geometry and biomechanics. Clin Biomech 5:162–168CrossRefGoogle Scholar
  3. 3.
    Watkins BA, Li Y, Lippman HE, Feng S (2003) Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot Essent Fatty Acids 3:387–398CrossRefGoogle Scholar
  4. 4.
    Kruger MC, Claassen N, Potgieter HC, Coetzer H, de Winer R (1996) Essential fatty acid supplementation and calcium retention in the ovariectomised rat. Osteoporos Int 6:101CrossRefGoogle Scholar
  5. 5.
    Sakaguchi K, Morita I, Murota S (1994) Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins Leukot Essent Fatty Acids 50:81–84PubMedCrossRefGoogle Scholar
  6. 6.
    Schlemmer CK, Coetzer H, Claassen N, Kruger MC (1999) Oestrogen and essential fatty acid supplementation corrects bone loss due to ovariectomy in the female Sprague Dawley rat. Prostaglandins Leukot Essent Fatty Acids 61:381–390PubMedCrossRefGoogle Scholar
  7. 7.
    Shen CL, Yeh JK, Rasty J, Li Y, Watkins BA (2006) Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. Br J Nutr 95:462–468PubMedCrossRefGoogle Scholar
  8. 8.
    Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary (n-3) fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216PubMedCrossRefGoogle Scholar
  9. 9.
    Watkins BA, Reinwald S, Li Y, Seifert MF (2005) Protective actions of soy isoflavones and n-3 PUFAs on bone mass in ovariectomized rats. J Nutr Biochem 16:479–488PubMedCrossRefGoogle Scholar
  10. 10.
    Kruger MC, Coetzer H, de Winter R, Gericke G, van Papendorp DH (1998) Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin Exp Res 19:385–394Google Scholar
  11. 11.
    Ehrlich PJ, Lanyon LE (2003) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700CrossRefGoogle Scholar
  12. 12.
    Judex S, Boyd S, Qin YX, Miller L, Muller R, Rubin C (2003) Combining high-resolution micro-computed tomography with material composition to define the quality of bone tissue. Curr Osteoporos Rep 1:11–19PubMedGoogle Scholar
  13. 13.
    Reinwald S, Li Y, Moriguchi T, Salem N Jr, Watkins BA (2004) Repletion with (n-3) fatty acids reverses bone structural deficits in (n-3)-deficient rats. J Nutr 134:388–394PubMedGoogle Scholar
  14. 14.
    Sirois I, Cheung AM, Ward WE (2003) Biomechanical bone strength and bone mass in young male and female rats fed a fish oil diet. Prostaglandins Leukot Essent Fatty Acids 68:415–421PubMedCrossRefGoogle Scholar
  15. 15.
    Kopelman PG (2004) Obesity as a medical problem. Nature 404:635–643Google Scholar
  16. 16.
    Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O’Shea M, Fernandes G (2005) The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice. J Nutr 135:1124–1130PubMedGoogle Scholar
  17. 17.
    Choi JS, Jung MH, Park HS, Song J (2004) Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed rats. Nutrition 20:1008–1017PubMedCrossRefGoogle Scholar
  18. 18.
    Vaskonen T, Laakso J, Mervaala E, Sievi E, Karppanen H (1996) Interrelationships between salt and fish oil in stroke-prone spontaneously hypertensive rat. Blood Press 5:178–189PubMedGoogle Scholar
  19. 19.
    Wang L, Banu J, McMahan CA, Kalu DN (2001) Male rodent model of age-related bone loss in men. Bone 29:141–148PubMedCrossRefGoogle Scholar
  20. 20.
    Nadon NL (2000) Maintaining aged rodents for biogerontology research. Lab Animal 33:36–41CrossRefGoogle Scholar
  21. 21.
    Simopoulos AP, Leaf A, Salem N Jr (1999) Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann Nutr Metab 43:127–130PubMedCrossRefGoogle Scholar
  22. 22.
    Watkins BA, Li Y, Allen KGD, Hoffmann WE, Seifert MF (2000) Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr 130:2274–2284PubMedGoogle Scholar
  23. 23.
    Iwamoto J, Takeda T, Yeh JK, Ichimura S, Toyama Y (2003) Effect of vitamin K2 on cortical and cancellous bones in orchidectomized young rats. Maturitas 44:19–27PubMedCrossRefGoogle Scholar
  24. 24.
    Parfitt AM, Drezner MJ, Glorieux FH, Kanis JA, Malluche H, Meunier PJ (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  25. 25.
    Bianco P, Ballanti P, Bonucci E (1988) Tartrate-resistant acid phosphatase activity in rat osteoblasts and osteocytes. Calcif Tissue Int 43:167–171PubMedCrossRefGoogle Scholar
  26. 26.
    Bloomfield SA, Hogan HA, Delp MD (2002) Decreases in bone blood flow and bone material properties in aging Fischer-344 rats. Clin Orthop Relat Res 396:248–257PubMedCrossRefGoogle Scholar
  27. 27.
    Kiebzak GM, Smith R, Howe JC, Gundberg CM, Sacktor B (1988) Bone status of senescent female rats: chemical, morphometric, and biomechanical analyses. J Bone Miner Res 3:439–446PubMedGoogle Scholar
  28. 28.
    Li Y, Seifert MF, Ney DM, Grahn M, Grant AL, Allen KG, Watkins BA (1999) Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J Bone Miner Res 14:1153–1162PubMedCrossRefGoogle Scholar
  29. 29.
    Staffas A, Nyman A (2003) Determination of cholecalciferol (vitamin D3) in selected foods by liquid chromatography: NMKL collaborative study. J AOAC Int 86:400–406PubMedGoogle Scholar
  30. 30.
    Ito M, Azuma Y, Takagi H, Kamimura T, Komoriya K, Ohta T, Kawaguchi H (2003) Preventive effects of sequential treatment with alendronate and 1α-hydroxyvitamin D3 on bone mass and strength in ovariectomized rats. Bone 33:90–99PubMedCrossRefGoogle Scholar
  31. 31.
    Li M, Healy DR, Li Y, Simmons HA, Su M, Jee WSS, Shen VW, Thompson DD (2004) Alfacalcidol prevents age-related bone loss and causes an atypical pattern of bone formation in aged male rats. J Musculoskel Neuron Interact 4:22–32Google Scholar
  32. 32.
    Watkins BA, Shen CL, Allen KG, Seifert MF (1996) Dietary (n-3) and (n-6) polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chicks. J Bone Miner Res 11:1321–1332PubMedGoogle Scholar
  33. 33.
    Liu D, Veit HP, Wilson JH, Denbow DM (2003) Maternal dietary lipids alter bone chemical composition, mechanical properties, and histological characteristics of progeny of Japanese quail. Poult Sci 82:463–473PubMedGoogle Scholar
  34. 34.
    Weiler HA, Kruger MC (2004) Polyunsaturated fatty acids and one mass. Am J Clin Nutr 80:1085–1086PubMedGoogle Scholar
  35. 35.
    Weiss LA, Barrett-Connor E, van Mühlen D (2005) Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 81:943–938Google Scholar
  36. 36.
    Blackwell KA, Raisz LG, Pilbeam CC (2006) Role of n-3 fatty acids in osteoclastogenesis. J Bone Miner Res 21(suppl 1):S293Google Scholar
  37. 37.
    Shen CL, McMahon K, Peterson J, Tatum T (2006) Effect of long-chain n-3 PUFA on inflammation during osteoblastogenesis. J Bone Miner Res 21(suppl 1):S392Google Scholar
  38. 38.
    Ward WE, Kim S, Robert Bruce W (2003) A Western-style diet reduces bone mass and biomechanical bone strength to a greater extent in male compared with female rats during development. Br J Nutr 90:589–595PubMedCrossRefGoogle Scholar
  39. 39.
    EAFUS: A Food Additive Database,∼dms/eafus.html

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C.-L. Shen
    • 1
  • J. K. Yeh
    • 2
  • J. Rasty
    • 3
  • M.-C. Chyu
    • 3
  • D. M. Dunn
    • 1
  • Y. Li
    • 4
  • B. A. Watkins
    • 4
  1. 1.Department of PathologyTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.Bone Metabolism LaboratoryWinthrop-University HospitalMineolaUSA
  3. 3.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA
  4. 4.Center for Enhancing Foods to Protect Health, Lipid Chemistry and Molecular Biology LaboratoryPurdue UniversityWest LafayetteUSA

Personalised recommendations