Calcified Tissue International

, Volume 79, Issue 5, pp 294–300 | Cite as

Dentin Alteration of Deciduous Teeth in Human Hypophosphatemic Rickets

  • T. Boukpessi
  • D. Septier
  • S. Bagga
  • M. Garabedian
  • M. Goldberg
  • C. Chaussain-Miller


Familial hypophosphatemic rickets is in most cases transmitted as an X-linked dominant trait and results from mutation of the PHEX gene, predominantly expressed in osteoblast and odontoblast. Patients have been reported to display important dentin defects, and therefore, we explored the dentin structure, composition, and distribution of extracellular matrix (ECM) molecules in hypophosphatemic human deciduous teeth. Compared to age-matched controls, the dentin from hypophosphatemic patients exhibited major differences: presence of large interglobular spaces resulting from the lack of fusion of calcospherites in the circumpulpal dentin; defective mineralization in the interglobular spaces contrasting with normal Ca-P levels in the calcospherites on X-ray microanalysis; abnormal presence of low-molecular weight protein complexes recognized on Western blots by antibodies against matrix extracellular phosphoglycoprotein (MEPE), dentin sialoprotein, osteopontin, and reduced osteocalcin (OC) level; and accumulation in the interglobular spaces of immunolabeling with antibodies against DSP, dentin matrix protein, bone sialoprotein, MEPE and OC, while chondroitin/dermatan sulfate glycosaminoglycans were exclusively located inside calcospherites. Alterations of the post-translational processing or partial degradation of some ECM appear as key factors in the formation of the defective hypophosphatemic dentin.


X-linked hypophosphatemia Dentin mineralization Interglobular space Non-collagenous protein 


  1. 1.
    HYP Consortium (1995) A gene (PHEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130–136CrossRefGoogle Scholar
  2. 2.
    Rowe PSN, Oudet CL, Francis F, Sinding C, Pannetier S, Econs J, et al. (1997) Distribution of mutations in the Phex gene in families with X-linked hypophosphatemic rickets (HYP). Hum Mol Genet 6:539–549PubMedCrossRefGoogle Scholar
  3. 3.
    Shellis RP (1983) Structural organization of calcospherites in normal and rachitic human dentine. Arch Oral Biol 28:85–95PubMedCrossRefGoogle Scholar
  4. 4.
    Murayama T, Iwatsubo R, Akiyama S, Amato A, Morisaki I (2000) Familial hypophosphatemic vitamin D-resistant rickets: dental findings and histologic study of teeth. Oral Surg Oral Med Pathol Oral Radiol Endod 90:310–316CrossRefGoogle Scholar
  5. 5.
    Goldberg M, Septier D, Bourd K, Hall R, Jeanny J, Jouet L, et al. (2002) The dentino-enamel junction revisited. Connect Tissue Res 43:482–489PubMedGoogle Scholar
  6. 6.
    Boyde A, Sela J (1978) Scanning electron microscope study of separated calcospherites from the matrices of different mineralizing systems. Calcif Tissue Res 26:47–49PubMedCrossRefGoogle Scholar
  7. 7.
    Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(suppl 1):33–40PubMedGoogle Scholar
  8. 8.
    Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27PubMedCrossRefGoogle Scholar
  9. 9.
    Abe K, Ooshima T, Masatomi Y, Sobue S, Moriwaki Y (1989) Microscopic and crystallographic examinations of the teeth of the X-linked hypophosphatemic mouse. J Dent Res 68:1519–1524PubMedGoogle Scholar
  10. 10.
    Scriver CR, Tenenhouse HS (1992) X-linked hypophosphataemia: a homologous phenotype in human and mice with unusual organ-specific gene dosage. J Inherit Metab Dis 15: 610–624PubMedCrossRefGoogle Scholar
  11. 11.
    Onishi T, Ogawa T, Hayashibara T, Hoshino T, Okawa R, Ooshima T (2005) Hyper-expression of osteocalcin mRNA in odontoblasts of Hyp mice. J Dent Res 84:84–88PubMedCrossRefGoogle Scholar
  12. 12.
    Ogawa T, Onishi T, Hayashibara T, Sakashita S, Okawa R, Ooshima T (2006) Dentinal defects in Hyp mice not caused by hypophosphatemia alone. Arch Oral Biol 51:58–63PubMedCrossRefGoogle Scholar
  13. 13.
    Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Garabedian M (2003) Dental abnormalities in patients with X linked hypophosphatemic rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142:324–331PubMedCrossRefGoogle Scholar
  14. 14.
    Fisher LW, Stubbs JT III, Young MF (1995) Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand 266:61–65Google Scholar
  15. 15.
    Goldberg M, Septier D, Escaig-Haye F (1987) Glycoconjugates in dentinogenesis and dentine. In: Prog Histochem Cytochem 17:1–112Google Scholar
  16. 16.
    Daley TD, Jarvis A, Wysocki GP, Kogon SL (1990) X-ray microanalysis of teeth from healthy patients and patients with familial hypophosphatemia. Calcif Tissue Int 47:350–355PubMedGoogle Scholar
  17. 17.
    Seeto E, Seow WK (1991) Scanning electron microscopic analysis of dentin in vitamin D-resistant rickets - assessment of mineralization and correlation with clinical findings. Pediatr Dent 13:43–48PubMedGoogle Scholar
  18. 18.
    Hietala EL, Larmas MA (1991) Mineral content of different areas of human dentin in hypophosphataemic vitamin D-resistant rickets. J Biol Buccale 19:129–134PubMedGoogle Scholar
  19. 19.
    Hauschka PV, Frenkel J, DeMuth R, Gundberg CM (1983) Presence of osteocalcin and related higher molecular weight 4-carboxyglutamic acid-containing proteins in developing bone. J Biol Chem 258:176–182PubMedGoogle Scholar
  20. 20.
    Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7:877–885PubMedGoogle Scholar
  21. 21.
    Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272:22736–22741PubMedCrossRefGoogle Scholar
  22. 22.
    Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54PubMedCrossRefGoogle Scholar
  23. 23.
    Takagi Y, Sasaki S (1986) Histological distribution of phosphophoryn in normal and pathological human dentins. J Oral Pathol 15:463–467PubMedCrossRefGoogle Scholar
  24. 24.
    D’Souza R, Bronckers ALJJ, Happonen RP, Doga DA, Farach-Carson MC, Butler WT (1992) Developmental expression of a 53 kD dentin sialoprotein in rat tooth organs. J Histochem Cytochem 40:359–366PubMedGoogle Scholar
  25. 25.
    McKee MD, Nanci A, Landis WJ, Gotoh Y, Gerstenfeld LC, Glimcher MJ (1991) Effects of fixation and demineralization on the retention of bone phosphoprotein and other matrix components as evaluated by biochemical analyses and quantitative immunocytochemistry. J Bone Miner Res 6:937–945PubMedCrossRefGoogle Scholar
  26. 26.
    Frank JD, Balena R, Masarachia P, Seedor JG, Cartwright ME (1993) The effects of three different demineralization agents on osteopontin localization in adult rat bone using immunohistochemistry. Histochem Cell Biol 99:295–301CrossRefGoogle Scholar
  27. 27.
    Chen J, McCulloch CA, Sodek J (1993) Bone sialoprotein in developing porcine dental tissues: cellular expression and comparison of tissue localization with osteopontin and osteonectin. Arch Oral Biol 38:241–249PubMedCrossRefGoogle Scholar
  28. 28.
    Rahima M, Tsay TG, Andujar M, Veis A (1988) Localization of phosphophoryn in rat incisor dentin using immunocytochemical techniques. J Histochem Cytochem 36:153–157PubMedGoogle Scholar
  29. 29.
    Septier D, Torres-Quintana MA, Menashi S, George A, Goldberg M (2001) Inositol hexasulphate, a casein kinase inhibitor, alters the distribution of dentin matrix protein 1 (DMP1) in cultured embryonic mouse tooth germs. Eur J Oral Sci 109:198–203PubMedCrossRefGoogle Scholar
  30. 30.
    Goldberg M, Rapoport O, Septier D, Palmier K, Hall R, Embery G, Young M, Ameye L (2003) Proteoglycans in predentin: the last 15 micrometers before mineralization. Connect Tissue Res 44(suppl 1):184–188PubMedGoogle Scholar
  31. 31.
    Boskey A, Spevak L, Tan M, Doty SB, Butler WT (2000) Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Calcif Tissue Int 67:472–478PubMedCrossRefGoogle Scholar
  32. 32.
    Tartaix PH, Doulaverakis M, George A, Fisher LW, Butler WT, Qin C, et al. (2004). In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem 279:18115–18120PubMedCrossRefGoogle Scholar
  33. 33.
    Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally: different roles of two gla-containing proteins. J Cell Biol 165:625–630PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T. Boukpessi
    • 1
  • D. Septier
    • 1
  • S. Bagga
    • 2
  • M. Garabedian
    • 3
  • M. Goldberg
    • 1
  • C. Chaussain-Miller
    • 1
  1. 1.Laboratoire Réparation et Remodelage des Tissus Oro-Faciaux, EA 2496 Groupe Matrices extracellulaires et biominéralisations, Faculté de Chirurgie DentaireUniversité University Paris 5MontrougeFrance
  2. 2.Faculté de Chirurgie Dentaire de MonastirTunisie
  3. 3.Department of Pediatric Endocrinology and INSERM U561Hôpital St. Vincent de PaulParisFrance

Personalised recommendations