Advertisement

Calcified Tissue International

, Volume 79, Issue 4, pp 230–244 | Cite as

Identification of a Promoter Element within the Zebrafish colXα1 Gene Responsive to Runx2 Isoforms Osf2/Cbfa1 and til-1 but not to pebp2αA2

  • B. Simões
  • N. Conceição
  • C. S. B. Viegas
  • J. P. Pinto
  • P. J. Gavaia
  • L. D. Hurst
  • R. N. Kelsh
  • M. L. CancelaEmail author
Laboratory Investigations

Abstract

Type X collagen is a short chain collagen specifically expressed by hypertrophic chondrocytes during endochondral ossification. We report here the functional analysis of the zebrafish (Danio rerio) collagen Xα1 gene (colXα1) promoter with the identification of a region responsive to two isoforms of the runt domain transcription factor runx2. Furthermore, we provide evidence for the presence of dual promoter usage in zebrafish, a finding that should be important to further understanding of the regulation of its restricted tissue distribution and spatial-temporal expression during early development. The zebrafish colXα1 gene structure is comparable to that recently identified by comparative genomics in takifugu and shows homology with corresponding mammalian genes, indicating that its general architecture has been maintained throughout vertebrate evolution. Our data suggest that, as in mammals, runx2 plays a role in the development of the osteogenic lineage, supporting zebrafish as a model for studies of bone and cartilage development.

Keywords

Runx2 colXα1 Evolutionary conservation Promoter Transcriptional regulation 

Notes

Acknowledgment

This work was partially funded by grants POCTI/CVT/42098/2001 (FishDev), POCTI/BCI/48748/2002 (SAMGP) and CCMAR funding from the Portuguese Science and Technology Foundation (FCT). NC, JPP and PJG were recipients of a postdoctoral (SFRH/BPD/18816/98 and PRAXIS/BPD/20229/99), and PhD (PRAXIS/BD/19665/99) fellowships from FCT. Part of this work was developed within the scope of a Luso-British Collaborative action (B-72/04) between MLC and RNK. Work in the laboratory of RNK was supported by the Wellcome Trust and Medical Research Council.

Supplementary material

supp.pdf (301 kb)
Supplementary material

References

  1. 1.
    Reichenberger E, Aigner T, von der Mark K, Sto H, Bertling W (1991) In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev Biol 148:562–572PubMedCrossRefGoogle Scholar
  2. 2.
    Beier F, Vornehm S, Poschl E, von der Mark K, Lammi MJ (1997) Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem 66:210–218PubMedCrossRefGoogle Scholar
  3. 3.
    Riemer S, Gebhard S, Beier F, Poschl E, von der Mark K (2002) Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: localization of a PTH/PTHrP-responsive region in the human COL10A1 enhancer. J Cell Biochem 86:688–699PubMedCrossRefGoogle Scholar
  4. 4.
    Eerola I, Elima K, Markkula M, Kananen K, Vuorio E (1996) Tissue distribution and phenotypic consequences of different type X collagen gene constructs in transgenic mice. Ann NY Acad Sci 785:248–250PubMedCrossRefGoogle Scholar
  5. 5.
    Beier F, Lammi M, Bertling W, von der Mark K (1996) Transcriptional regulation of the human type X collagen gene expression. Ann NY Acad Sci 785:209–211PubMedCrossRefGoogle Scholar
  6. 6.
    Jacenko O, LuValle PA, Olsen BR (1993) Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365:56–61PubMedCrossRefGoogle Scholar
  7. 7.
    Dourado G, LuValle PA (1998) Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J Cell Biochem 70:507–516PubMedCrossRefGoogle Scholar
  8. 8.
    Magee C, Nurminskaya M, Faverman L, Galera P, Linsenmayer TF (2005) SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem 280:25331–25338PubMedCrossRefGoogle Scholar
  9. 9.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754PubMedCrossRefGoogle Scholar
  10. 10.
    Pinto J, Conceicao N, Viegas C, Leite R, Hurst L, Kelsh R, Cancela M (2005) Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. J Bone Miner Res 20:1440–1453PubMedCrossRefGoogle Scholar
  11. 11.
    Jimenez MJG, Balbin M, Lopez JM, Alvarez J, Komori T, Lopez-Otin C (1999) Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 19:4431–4442PubMedGoogle Scholar
  12. 12.
    Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S, Olsen BR (2001) Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 106:97–106PubMedCrossRefGoogle Scholar
  13. 13.
    Zheng Q, Zhou G, Morello R, Chen Y, Garcia-Rojas X, Lee B (2003) Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol 162:833–842PubMedCrossRefGoogle Scholar
  14. 14.
    Sakakura C, Yamaguchi-Iwai Y, Satake M, Bae S, Takahashi A, Ogawa E, Hagiwara A, Takahashi T, Murakami A, Makino K, Nakagawa T, Kamada N, Ito Y (1994) Growth inhibition and induction of differentiation of t(8;21) acute myeloid leukemia cells by the DNA-binding domain of PEBP2 and the AML1/MTG8(ETO)-specific antisense oligonucleotide. Proc Natl Acad Sci USA 91:11723–11727PubMedCrossRefGoogle Scholar
  15. 15.
    Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274:6972–6978PubMedCrossRefGoogle Scholar
  16. 16.
    Banerjee C, Javed A, Choi J-Y, Green J, Rosen V, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2001) Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142:4026–4039PubMedCrossRefGoogle Scholar
  17. 17.
    Avaron F, Hoffman L, Guay D, Akimenko MA (2006) Characterization of two new zebrafish members of the hedgehog family: atypical expression of a zebrafish indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev Dyn 235:478–489PubMedCrossRefGoogle Scholar
  18. 18.
    Padhi B, Joly L, Tellis P, Smith A, Nanjappa P, Chevrette M, Ekker M, Akimenko M (2004) Screen for genes differentially expressed during regeneration of the zebrafish caudal fin. Dev Dyn 231:527–541PubMedCrossRefGoogle Scholar
  19. 19.
    Thisse C, Thisse B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119:1203–1215PubMedGoogle Scholar
  20. 20.
    Sambrook J, Frisch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  21. 21.
    Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942PubMedCrossRefGoogle Scholar
  22. 22.
    Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  23. 23.
    Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedGoogle Scholar
  24. 24.
    Kong R, Kwan K, Lau E, Thomas J, Boot-Handford R, Grant M, Cheah K (1993) Intron-exon structure, alternative use of promoter and expression of the mouse collagen X gene, Col10a-1. Eur J Biochem 213:99–111PubMedCrossRefGoogle Scholar
  25. 25.
    Reichenberger E, Beier F, LuValle P, Olsen BR, von der Mark K, Bertling WM (1992) Genomic organization and full-length cDNA sequence of human collagen X. FEBS J 311:305–310CrossRefGoogle Scholar
  26. 26.
    homas JT, Sweetman WA, Cresswell CJ, Wallis GA, Grant ME, Boot-Handford RP (1995) Sequence comparison of three mammalian type-X collagen promoters and preliminary functional analysis of the human promoter. Gene 160:291–296CrossRefGoogle Scholar
  27. 27.
    Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami, Satake M, Ito Y, Shigesada K (1990) Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J Virol 64:4808–4819PubMedGoogle Scholar
  28. 28.
    Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695PubMedGoogle Scholar
  29. 29.
    Schmidt H, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  30. 30.
    Campbell MR, Gress CJ, Appleman EH, Jacenko O (2004) Chicken collagen X regulatory sequences restrict transgene expression to hypertrophic cartilage in mice. Am J Pathol 164:487–499PubMedGoogle Scholar
  31. 31.
    Ninomiya Y, Gordon M, van der Rest M, Schmid T, Linsenmeyer T, Olsen B (1986) The developmentally regulated type X collagene gene contains a long reading frame without introns. J Biol Chem 261:5041–5050PubMedGoogle Scholar
  32. 32.
    Chan D, Jacenko O (1998) Phenotypic and biochemical consequences of collagen X mutations in mice and humans. Matrix Biol 17:169–184PubMedCrossRefGoogle Scholar
  33. 33.
    Lu Valle P, Iwamoto M, Fanning P, Pacifici M, Olsen BR (1993) Multiple negative elements in a gene that codes for an extracellular matrix protein, collagen X, restrict expression to hypertrophic chondrocytes. J Cell Biol 121:1173–1179PubMedCrossRefGoogle Scholar
  34. 34.
    Mizoguchi I, Takahashi I, Sasano Y, Kagayama M, Kuboki Y, Mitani H (1997) Localization of types I, II and X collagen and osteocalcin in intramembranous, endochondral and chondroid bone of rats. Anat Embryol (Berl) 196:291–297CrossRefGoogle Scholar
  35. 35.
    Huysseune A, Van der heyden C, Sire J (1998) Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anat Embryol (Berl) 198:289–305CrossRefGoogle Scholar
  36. 36.
    Benjamin M, Ralphs JR, Eberewariye OS (1992) Cartilage and related tissues in the trunk and fins of teleosts. J Anat 181:113–118PubMedGoogle Scholar
  37. 37.
    Woods A, James C, Underhill TM, Beier F (2004) Identification of the putative collagen X gene from the pufferfish Fugu rubripes. Gene 342:77–83PubMedCrossRefGoogle Scholar
  38. 38.
    Bornstein P, McKay J (1988) The first intron of the alpha 1(I) collagen gene contains several transcriptional regulatory elements. J Biol Chem 263:1603–1606PubMedGoogle Scholar
  39. 39.
    Horton W, Miyashita T, Kohno K, Hassell JR, Yamada Y (1987) Identification of a phenotype-specific enhancer in the first intron of the rat collagen II gene. Proc Natl Acad Sci USA 84:8864–8868PubMedCrossRefGoogle Scholar
  40. 40.
    Long F, Sonenshein GE, Linsenmayer TF (1998) Multiple transcriptional elements in the avian type X collagen gene. Identification of sp1 family proteins as regulators for high level expression in hypertrophic chondrocytes. J Biol Chem 273:6542–6549PubMedCrossRefGoogle Scholar
  41. 41.
    Long F, Linsenmayer TF (1995) Tissue-specific regulation of the type X collagen gene. J Biol Chem 270:31310–31314PubMedCrossRefGoogle Scholar
  42. 42.
    Conceicao N, Silva AC, Fidalgo J, Belo JA, Cancela ML (2005) Identification of alternative promoter usage for the matrix Gla protein gene: evidence for differential expression during early development in Xenopus laevis. FEBS Lett 272:1501–1510Google Scholar
  43. 43.
    Seth P, Mahajan VS, Chauhan SS (2003) Transcription of human cathepsin L mRNA species hCATL B from a novel alternative promoter in the first intron of its gene. Gene 321:83–91PubMedCrossRefGoogle Scholar
  44. 44.
    Kahler RA, Westendorf JJ (2003) Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem 278:11937–11944PubMedCrossRefGoogle Scholar
  45. 45.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B. Simões
    • 1
  • N. Conceição
    • 1
  • C. S. B. Viegas
    • 1
  • J. P. Pinto
    • 1
    • 4
  • P. J. Gavaia
    • 1
  • L. D. Hurst
    • 2
  • R. N. Kelsh
    • 3
  • M. L. Cancela
    • 1
    Email author
  1. 1.Centro de Ciências do Mar do AlgarveUniversity of AlgarveFaroPortugal
  2. 2.Department of Biology and Biochemistry and Centre for Regenerative MedicineUniversity of BathBathUK
  3. 3.Department of Biology and BiochemistryUniversity of BathBathUK
  4. 4.Iron Genes and Immune SystemInstitute for Molecular and Cell BiologyPortoPortugal

Personalised recommendations