Calcified Tissue International

, Volume 79, Issue 3, pp 169–178 | Cite as

Runx2 Overexpression Enhances Osteoblastic Differentiation and Mineralization in Adipose - Derived Stem Cells in vitro and in vivo

Laboratory Investigations


Like bone marrow stromal cells, adipose tissue-derived stem cells (ADSCs) possess multilineage potential, a capacity for self-renewal and long-term viability. To confirm whether ADSCs represent a promising source of cells for gene-enhanced bone tissue-engineering, the osteogenic potential of ADSCs under the control of certain osteoinductive genes has been evaluated. Runx2, a transcription factor at the downstream end of bone morphogenetic protein (BMP) signaling pathways, is essential for osteoblast differentiation and bone formation. In this study we used adenovirus vector to deliver Runx2 to ADSCs and then examined the enhancement of osteogenic activity. Overexpression of Runx2 inhibited adipogenesis, as demonstrated by suppression of LPL and PPARγ expression at the mRNA level and reduced lipid droplet formation. Moreover, ADSCs transduced with Ad-Runx2 underwent rapid and marked osteoblast differentiation as determined by osteoblastic gene expression, alkaline phosphatase activity and mineral deposition. Additionally, histological examination revealed that implantation of Runx2 modified ADSCs could induce mineral deposition and bone-like tissue formation in vivo. These results confirmed, firstly, the ability of Runx2 to promote osteogenesis and cell differentiation and, secondly, the competence of ADSCs as target cells for bone tissue engineering. Our work demonstrates a potential new approach for bone repair using Runx2-modified ADSCs for bone tissue engineering.


Adipose–derived stem cells Runx2 Gene therapy Differentiation Osteogenesis 


  1. 1.
    Franceschi RT, Yang S, Rutherford RB, Krebsbach PH, Zhao M, Wang D (2004) Gene therapy approaches for bone regeneration. Cells Tissues Organs 176:95–108PubMedCrossRefGoogle Scholar
  2. 2.
    Einhorn TA, Majeska RJ, Mohaideen A, Kagel EM, Bouxsein ML, Turek TJ, Wozney JM (2003) A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am 85-A(8):1425–1435PubMedGoogle Scholar
  3. 3.
    Seeherman HJ, Bouxsein M, Kim H, Li R, Li XJ, Aiolova M, Wozney JM (2004) Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. J Bone Joint Surg Am 86-A(9):1961–1972PubMedGoogle Scholar
  4. 4.
    Starr AJ (2003) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures. J Bone Joint Surg Am 85-A(10):2049–2050PubMedGoogle Scholar
  5. 5.
    Breitbart AS, Grande DA, Mason JM, Barcia M, James T, Grant RT (1999) Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg 42(5):488–495PubMedGoogle Scholar
  6. 6.
    Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA (2000) Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res 379 (Suppl):S171–S178PubMedCrossRefGoogle Scholar
  7. 7.
    Edwards PC, Ruggiero S, Fantasia J, Burakoff R, Moorji SM, Paric E, Razzano P, Grande DA, Mason JM (2005) Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 12(1):75–86PubMedCrossRefGoogle Scholar
  8. 8.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedCrossRefGoogle Scholar
  9. 9.
    Zuk PA, Zhu M, Ashjian P, Ugarte De DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295PubMedCrossRefGoogle Scholar
  10. 10.
    Blum JS, Barry MA, Mikos AG, Jansen JA (2003) In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum Gene Ther 14(18):1689–1701PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng SL, Lou J, Wright NM, Lai CF, Avioli LV, Riew KD (2001) In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int 68(2):87–94PubMedGoogle Scholar
  12. 12.
    Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13(8):1025–1036PubMedGoogle Scholar
  13. 13.
    Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G (1997) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16(3):307–310PubMedCrossRefGoogle Scholar
  14. 14.
    Gersbach CA, Byers BA, Pavlath GK, Garcia AJ (2004) Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res 300(2):406–417PubMedCrossRefGoogle Scholar
  15. 15.
    Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ (2002) Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 17(11):1931–1944PubMedCrossRefGoogle Scholar
  16. 16.
    Winnard RG, Gerstenfeld LC, Toma CD, Franceschi RT (1995) Fibronectin gene expression, synthesis and accumulation during in vitro differentiation of chicken osteoblasts. J Bone Miner Res 10(12): 1969–1977PubMedCrossRefGoogle Scholar
  17. 17.
    Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell. 116(5):639–648PubMedCrossRefGoogle Scholar
  18. 18.
    Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, S Kadiyala (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355 Suppl:247–256CrossRefGoogle Scholar
  19. 19.
    Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183(2):355–366PubMedCrossRefGoogle Scholar
  20. 20.
    Conget PA, Minguell JJ (2000) Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 28(4):382–390PubMedCrossRefGoogle Scholar
  21. 21.
    Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P (2002) High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol 22(17):6222–6233PubMedCrossRefGoogle Scholar
  22. 22.
    Hidaka C, Khan SN, Farmer JC, Sandhu HS (2002) Gene therapy for spinal applications. Orthop Clin North Am 33(2):439–446PubMedCrossRefGoogle Scholar
  23. 23.
    Hannallah D, Peterson B, Lieberman JR, Huard Fu (2003) Gene therapy in orthopaedic surgery. Instr Course Lect 52:753–768PubMedGoogle Scholar
  24. 24.
    Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT (2003) In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 18(4):705–715PubMedCrossRefGoogle Scholar
  25. 25.
    Frendo JL, Xiao G, Fuchs S, Franceschi RT, Karsenty G, Ducy P (1998) Functional hierarchy between two OSE2 elements in the control of osteocalcin gene expression in vivo. J Biol Chem 273(46):30509–30516PubMedCrossRefGoogle Scholar
  26. 26.
    Kern B, Shen J, Starbuck M, Karsenty G (2001) Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem 276(10):7101–7107PubMedCrossRefGoogle Scholar
  27. 27.
    Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I (1999) Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1(2):121–133PubMedCrossRefGoogle Scholar
  28. 28.
    Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Robey PG (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63(8):1059–1069PubMedCrossRefGoogle Scholar
  29. 29.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Cell Biochem 64(2): 295–312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Sports MedicinePeking University Third HospitalBeijingChina
  2. 2.Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
  3. 3.Department of OrthopedicsWannan Medical College Yijishan HospitalWuhuChina

Personalised recommendations