Advertisement

Calcified Tissue International

, Volume 77, Issue 5, pp 311–318 | Cite as

Prevention of Bone Loss by Phloridzin, an Apple Polyphenol, in Ovariectomized Rats under Inflammation Conditions

  • C. Puel
  • A. Quintin
  • J. Mathey
  • C. Obled
  • M. J. Davicco
  • P. Lebecque
  • S. Kati-Coulibaly
  • M. N. Horcajada
  • V. CoxamEmail author
Laboratory Investigations

Abstract

Aging and sex hormones related changes lead to inflammatory and oxidant conditions, which are involved in the pathogenesis of osteoporosis. Recent studies have suggested that polyphenols may exert a protective effect in such conditions. We assessed the effect of phloridzin (Phlo), a flavonoid exclusively found in apple, on bone metabolism in ovariectomized (OVX) or sham-operated (SH) rats with and without inflammation. Six-month-old Wistar rats were allocated to two equal groups that received either a control diet or a diet supplemented with 0.25% Phlo for 80 days. Three weeks before necropsy, inflammation was induced by subcutaneous injection of talc in 10 animals of each group. At necropsy, ovariectomy decreased both total (T-BMD) and metaphyseal (M-BMD) femoral bone mineral density (P < 0.01). Inflammation conditions, checked by an increase in the spleen weight and α1-acid glycoprotein concentration in OVX rats, exacerbated the decrease in T-BMD (g/cm2) (as well as M-BMD) observed in castrated animals (P < 0.05). Daily Phlo intake prevented ovariectomy-induced bone loss in conditions of inflammation as shown by T-BMD and M-BMD (P < 0.05). At the diaphyseal site, BMD was improved by Phlo in OVX rats with or without inflammation (P < 0.05). These results could be explained by changes in bone remodeling as the increased urinary deoxypyridinoline excretion in OVX and OVXinf animals was prevented by the polyphenol-rich diet (P < 0.001), while plasma osteocalcin concentration was similar in all experimental groups. In conclusion, Phlo consumption may provide protection against ovariectomy-induced osteopenia under inflammation conditions by improving inflammation markers and bone resorption.

Key words:

Phloridzin Bone-sparing effect Ovariectomized rat Inflammation 

References

  1. 1.
    Lindsay R (1992) The growing problem of osteoporosis. Osteoporosis Int 2:267–268Google Scholar
  2. 2.
    Ralston SH (1994) Analysis of gene expression in human bone biopsies by polymerase chain reaction: evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res 9:883–890PubMedGoogle Scholar
  3. 3.
    Pacifici R (1998) Cytokines, estrogen, and postmenopausal osteoporosis — the second decade. Endocrinology 139:2659–2661CrossRefPubMedGoogle Scholar
  4. 4.
    Santos-Eggimann B (1997) Demographic trends: implications for prevention in the female population. Ther Umsch 54:431–435PubMedGoogle Scholar
  5. 5.
    Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E, HERS I (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA 280:605–613CrossRefPubMedGoogle Scholar
  6. 6.
    Hulley S, Furberg C, Barrett-Connor E, Cauley J, Grady D, Haskell W, Knopp R, Lowery M, Satterfield S, Schrott H, Vittinghoff E, Hunninghake D, HERS II (2002) Noncardiovascular disease outcomes during 6.8 years of hormone therapy. JAMA 288:58–66CrossRefPubMedGoogle Scholar
  7. 7.
    Lacey JV, Mink PJ, Lubin JH, Sherman ME, Troisi R, Hartge P, Schatzkin A, Schairer C (2002) Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288:334–341CrossRefPubMedGoogle Scholar
  8. 8.
    Million Women Study (MWS) Collaborators (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427Google Scholar
  9. 9.
    Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 9:155–165Google Scholar
  10. 10.
    Horcajada-Molteni MN, Coxam V (2001) Flavonols and isoflavones prevent bone loss in the ovariectomized rat, a model for postmenopausal osteoporosis. In: Burkhardt F, Dawson-Hughes B, Heaney RP (eds) Nutritional aspects of osteoporosis. Academic Press, San Diego, pp 325–340Google Scholar
  11. 11.
    /attel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42CrossRefPubMedGoogle Scholar
  12. 12.
    Robbins SP (1994) Biochemical markers for assessing skeletal growth. Eur J Clin Nutr 48:S199–S209Google Scholar
  13. 13.
    Pastoureau P, Chomel A, Bonnet J (1995) Specific evaluation of localized bone mass and bone loss in the rat using dual energy X-ray absorptiometry subregional analysis. Osteoporos Int 5:143–149CrossRefPubMedGoogle Scholar
  14. 14.
    Cook JGH (1975) Factors influencing the assay of creatinine. Ann Clin Biochem 12:219–232PubMedGoogle Scholar
  15. 15.
    Breuille D, Arnal M, Rambourdin F, Bayle G, Levieux D, Obled C (1998) Sustained modifications of protein metabolism in various tissues in a rat model of long-lasting sepsis. Clin Sci (Colch) 94:413–423Google Scholar
  16. 16.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191PubMedGoogle Scholar
  17. 17.
    Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136CrossRefPubMedGoogle Scholar
  18. 18.
    Minne HW, Pfeilschifter J, Scharla S, Mutschelknauss S, Schwarz A, Krempien B, Ziegler R (1984) Inflammation-mediated osteopenia in the rat: a new animal model for pathological loss of bone mass. Endocrinology 115:50–54PubMedCrossRefGoogle Scholar
  19. 19.
    Richard CD, Gauldie J (1995) Role of cytokines in acute-phase response. In: Aggarwal BB, Puri RK (eds) Human cytokines: their role in disease and therapy. Blackwell Science, Cambridge, pp 253–269Google Scholar
  20. 20.
    Cuzzocrea S, Santagati S, Sautebin L, Mazzon E, Calabro I, Caputi AP, Maggi A (2000) 17Beta-estradiol antiinflammatory activity in carrageenan-induced pleurisy. Endocrinology 141:1455–1463CrossRefPubMedGoogle Scholar
  21. 21.
    Marusic A, Kos K, Stavljenic A, Vukicevic S (1990) Talc granulomatosis in the rat. Involvement of bone in the acute-phase response. Inflammation 14:205–216Google Scholar
  22. 22.
    Fournier T, Medjoubi N, Porquet D (2000) Alpha-1-acid glycoprotein. Biochim Biophys Acta 1482:157–171PubMedGoogle Scholar
  23. 23.
    Vukicevic S, Marusic A, Stavljenic A, Cesnjaj M, Ivankovic D (1994) The role of tumor necrosis factor-alpha in the generation of acute phase response and bone loss in rats with talc granulomatosis. Lab Invest 70:386–391PubMedGoogle Scholar
  24. 24.
    Krempien B, Vukicevic S, Vogel M, Stavljenic A, Buchele R (1988) Cellular basis of inflammation-induced osteopenia in growing rats. J Bone Miner Res 3:573–582PubMedCrossRefGoogle Scholar
  25. 25.
    Escarpa A, Gonzalez MC (1998) High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J Chromatogr A 823:331–337CrossRefPubMedGoogle Scholar
  26. 26.
    Calliste CA, Le Bail JC, Trouillas P, Pouget C, Habrioux G, Chulia AJ, Duroux JL (2001) Chalcones: structural requirements for antioxidant, estrogenic and antiproliferative activities. Anticancer Res 21:3949–3956PubMedGoogle Scholar
  27. 27.
    Miksicek RJ (1993) Commonly occurring plant flavonoids have estrogenic activity. Mol Pharmacol 44:37–43PubMedGoogle Scholar
  28. 28.
    Fritsche S, Steinhart H (1999) Occurrence of hormonally active compounds in food: a review. Eur Food Res Technol 209:153–179Google Scholar
  29. 29.
    Coxam V, Bowman BM, Mecham M, Roth CM, Miller MA, Miller SC (1996) Effects of dihydrotestosterone alone and combined with estrogen on bone mineral density, bone growth and formation rates in ovariectomized rats. Bone 19:107–114CrossRefPubMedGoogle Scholar
  30. 30.
    Arjmandi BH, Birnbaum RS, Juma S, Barengolts E, Kukreja SC (2000) The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms. Calcif Tissue Int 66:61–65CrossRefPubMedGoogle Scholar
  31. 31.
    Picherit C, Bennetau-Pelissero C, Chanteranne B, Lebecque P, Davicco MJ, Barlet JP, Coxam V (2001) Soybean isoflavones dose-dependently reduce bone turnover but do not reverse established osteopenia in adult ovariectomized rats. J Nutr 131:723–728PubMedGoogle Scholar
  32. 32.
    Fanti P, Monier-Faugere MC, Geng Z, Schmidt J, Morris PE, Cohen D, Malluche HH (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 8:274–281CrossRefPubMedGoogle Scholar
  33. 33.
    Coxam V, Bowman BM, Mecham M, Roth CM, Miller MA, Miller SC (1996) Effects of dihydrotestosterone alone and combined with estrogen on bone mineral density, bone growth, and formation rates in ovariectomized rats. Bone 19:107–114CrossRefPubMedGoogle Scholar
  34. 34.
    Ridgway T, O’Reilly J, West G, Tucker G, Wiseman H (1996) Potent antioxidant properties of novel apple-derived flavonoids with commercial potential as food additives. Biochem Soc Trans 24:39SGoogle Scholar
  35. 35.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639PubMedCrossRefGoogle Scholar
  36. 36.
    Mody N, Parhami F, Sarafian TA, Demer L (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519CrossRefPubMedGoogle Scholar
  37. 37.
    Seifert MF, Watkins BA (1997) Role of dietary lipid and antioxidants in bone metabolism. Nutr Res 17:1209–1228CrossRefGoogle Scholar
  38. 38.
    Raisz LG, Fall PM (1990) Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvaria: interaction with cortisol. Endocrinology 126:1654–1659PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. Puel
    • 1
  • A. Quintin
    • 1
  • J. Mathey
    • 1
  • C. Obled
    • 2
  • M. J. Davicco
    • 1
  • P. Lebecque
    • 1
  • S. Kati-Coulibaly
    • 1
    • 3
  • M. N. Horcajada
    • 1
  • V. Coxam
    • 1
    Email author
  1. 1.Unité des Maladies Métaboliques et MicronutrimentsINRA TheixSaint Genès-ChampanelleFrance
  2. 2.Unité du Métabolisme ProtéiqueINRA TheixSaint Genès-ChampanelleFrance
  3. 3.Laboratoire de Nutrition et PharmacologieUFR Biosciences Université de CocodyCôte d’Ivoire

Personalised recommendations