Calcified Tissue International

, Volume 77, Issue 5, pp 263–274 | Cite as

A Clinical and Molecular Overview of the Human Osteopetroses

Review article

Abstract

The osteopetroses are a heterogeneous group of bone remodeling disorders characterized by an increase in bone density due to a defect in osteoclastic bone resorption. In humans, several types can be distinguished and a classification has been made based on their mode of inheritance, age of onset, severity, and associated clinical symptoms. The best-known forms of osteopetrosis are the malignant and intermediate autosomal recessive forms and the milder autosomal dominant subtypes. In addition to these forms, a restricted number of cases have been reported in which additional clinical features unrelated to the increased bone mass occur. During the last years, molecular genetic studies have resulted in the identification of several disease-causing gene mutations. Thus far, all genes associated with a human osteopetrosis encode proteins that participate in the functioning of the differentiated osteoclast. This contributed substantially to the understanding of osteoclast functioning and the pathogenesis of the human osteopetroses and will provide deeper insights into the molecular pathways involved in other bone pathologies, including osteoporosis.

Keywords

Osteoclast Bone resorption Osteopetrosis Human 

Notes

Acknowledgments

We would like to thank Geert Mortier, MD, PhD, clinical geneticist at the Department of Medical Genetics of the University of Gent (Ghent, Belgium), and Filip Vanhoenacker, MD, PhD, radiologist at the Department of Radiology of the University Hospital of Antwerp (Antwerp, Belgium) who provided us with radiographs of the patients. This study is supported by the fund for scientific research flanders (FWO) with a research project (G.0404.00). WB and LVW are postdoctoral researchers of the FWD.

References

  1. 1.
    Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324CrossRefPubMedGoogle Scholar
  2. 2.
    Baron R, Neff L, Roy C, Boisvert A, Caplan M (1986) Evidence for a high and specific concentration of (Na+,K+)ATPase in the plasma membrane of the osteoclast. Cell 46:311–320PubMedGoogle Scholar
  3. 3.
    Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756PubMedGoogle Scholar
  4. 4.
    Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857PubMedGoogle Scholar
  5. 5.
    Stoker DJ, (2002) Osteopetrosis. Semin Musculoskelet Radiol 6:299–305CrossRefPubMedGoogle Scholar
  6. 6.
    Phadke SR, Gupta A, Pahi J, Pandey A, Gautam P, Agarwal SS (1999) Malignant recessive osteopetrosis. Indian Pediatr 36:69–74PubMedGoogle Scholar
  7. 7.
    Fasth A, Porras O (1999) Human malignant osteopetrosis: pathophysiology, management and the role of bone marrow transplantation. Pediatr Transplant 3 (Suppl 1):102–107PubMedGoogle Scholar
  8. 8.
    Wilson CJ, Vellodi A (2000) Autosomal recessive osteopetrosis: diagnosis, management, and outcome. Arch Dis Child 83:449–452PubMedGoogle Scholar
  9. 9.
    Mohn A, Capanna R, Delli Pizzi C, Morgese G, Chiarelli F (2004) Autosomal malignant osteopetrosis. From diagnosis to therapy. Minerva Pediatr 56:115–118PubMedGoogle Scholar
  10. 10.
    Gerritsen EJ, Vossen JM, van Loo IH, Hermans J, Helfrich MH, Griscelli C, Fischer A (1994) Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. Pediatrics 93:247–253PubMedGoogle Scholar
  11. 11.
    Gerritsen EJ, Vossen JM, Fasth A, Friedrich W, Morgan G, Padmos A, Vellodi A, Porras O, O’Meara A, Porta F (1994) Bone marrow transplantation for autosomal recessive osteopetrosis A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J Pediatr 125:896–902PubMedGoogle Scholar
  12. 12.
    Key LL, Jr., Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332:1594–1599CrossRefPubMedGoogle Scholar
  13. 13.
    Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346PubMedGoogle Scholar
  14. 14.
    Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063CrossRefPubMedGoogle Scholar
  15. 15.
    Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, Dupuis-Girod S, Ellis I, Etzioni A, Fasth A, Fisher A, Gerritsen B, Gulino V, Horwitz E, Klamroth V, Lanino E, Mirolo M, Musio A, Matthijs G, Nonomaya S, Notarangelo LD, Ochs HD, Superti Furga A, Valiaho J, van Hove JL, Vihinen M, Vujic D, Vezzoni P, Villa A (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773CrossRefPubMedGoogle Scholar
  16. 16.
    Michigami T, Kageyama T, Satomura K, Shima M, Yamaoka K, Nakayama M, Ozono K (2002) Novel mutations in the a3 subunit of vacuolar H(+)-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone 30:436–439CrossRefPubMedGoogle Scholar
  17. 17.
    Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A (2003) Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162:57–68PubMedGoogle Scholar
  18. 18.
    Scimeca JC, Quincey D, Parrinello H, Romatet D, Grosgeorge J, Gaudray P, Philip N, Fischer A, Carle GF (2003) Novel mutations in the TCIRG1 gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Hum Mutat 21:151–157CrossRefPubMedGoogle Scholar
  19. 19.
    Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, Garcia-Palacios V, Oakley JI, Orchard PJ (2004) In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J Bone Miner Res 19:1329–1338PubMedGoogle Scholar
  20. 20.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215CrossRefPubMedGoogle Scholar
  21. 21.
    Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867CrossRefPubMedGoogle Scholar
  22. 22.
    Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747PubMedGoogle Scholar
  23. 23.
    Shin YJ (2004) Chloride channel CICN7 mutations in a Korean patient with infantile malignant osteopetrosis initially presenting with neonatal thrombocytopenia. J Perinatol 24:312–314PubMedGoogle Scholar
  24. 24.
    Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164:1537–1545PubMedGoogle Scholar
  25. 25.
    Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M, Kornak U, Jentsch TJ (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091PubMedGoogle Scholar
  26. 26.
    Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, Villa A, Vacher J (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406CrossRefPubMedGoogle Scholar
  27. 27.
    Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J (2001) The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone 28:513–523CrossRefPubMedGoogle Scholar
  28. 28.
    Fischer T, De Vries L, Meerloo T, Farquhar MG (2003) Promotion of G alpha i3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci USA 100:8270–8275PubMedGoogle Scholar
  29. 29.
    Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C (2004) Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat 23:471–476PubMedGoogle Scholar
  30. 30.
    Quarello P, Forni M, Barberis L, Defilippi C, Campagnoli MF, Silvestro L, Frattini A, Chalhoub N, Vacher J, Ramenghi U (2004) Severe malignant osteopetrosis caused by a GL gene mutation. J Bone Miner Res 19:1194–1199PubMedGoogle Scholar
  31. 31.
    Teti A, Migliaccio S, Taranta A, Bernardini S, De Rossi G, Luciani M, Iacobini M, De Felice L, Boldrini R, Bosman C, Corsi A, Bianco P (1999) Mechanisms of osteoclast dysfunction in human osteopetrosis: abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures. J Bone Miner Res 14:2107–2117PubMedGoogle Scholar
  32. 32.
    Flanagan AM, Sarma U, Steward CG, Vellodi A, Horton MA (2000) Study of the nonresorptive phenotype of osteoclast-like cells from patients with malignant osteopetrosis: a new approach to investigating pathogenesis. J Bone Miner Res 15:352–360PubMedGoogle Scholar
  33. 33.
    Helfrich MH, Gerritsen EJ (2001) Formation of non-resorbing osteoclasts from peripheral blood mononuclear cells of patients with malignant juvenile osteopetrosis. Br J Haematol 112:64–68CrossRefPubMedGoogle Scholar
  34. 34.
    Alexander WG (1923) Report of a case of so-called “marble bones” with a review of the literature and a translation of an article. Am J Roentgenol 10:280–301Google Scholar
  35. 35.
    Kahler SG, Burns JA, Aylsworth AS (1984) A mild autosomal recessive form of osteopetrosis. Am J Med Genet 17:451–464CrossRefPubMedGoogle Scholar
  36. 36.
    Bejaoui M, Baraket M, Lakhoua R, Mezni F, Hammou Jeddi A, Kamoun A, Kharrat H, Essoussi S, Harbi A, Ben Dridi MF (1992) [Recessive osteopetrosis Identification of a form of medium severity.] Arch Fr Pediatr 49:627–631PubMedGoogle Scholar
  37. 37.
    Colonia AM, Schaimberg CG, Yoshinari NH, Santos M, Jorgetti V, Cossermelli W (1993) [Osteopetrosis: report of 2 cases and review of the literature.] Rev Hosp Clin Fac Med Sao Paulo 48:242–247PubMedGoogle Scholar
  38. 38.
    Cure JK, Key LL, Goltra DD, VanTassel P (2000) Cranial MR imaging of osteopetrosis. AJNR Am J Neuroradiol 21:1110–1115PubMedGoogle Scholar
  39. 39.
    Campos-Xavier AB, Saraiva JM, Ribeiro LM, Munnich A, Cormier-Daire V (2003) Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet 112:186–189PubMedGoogle Scholar
  40. 40.
    Bollerslev J, Andersen PE, Jr. (1988) Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 9:7–13PubMedGoogle Scholar
  41. 41.
    Kovacs CS, Lambert RG, Lavoie GJ, Siminoski K (1995) Centrifugal osteopetrosis: appendicular sclerosis with relative sparing of the vertebrae. Skeletal Radiol 24:27–29PubMedGoogle Scholar
  42. 42.
    Johnston CC Jr, Lavy N, Lord T, Vellios F, Merritt AD, Deiss WP Jr (1968) Osteopetrosis. A clinical, genetic, metabolic, and morphologic study of the dominantly inherited, benign form. Medicine (Baltimore) 47:149–167Google Scholar
  43. 43.
    Bollerslev J (1987) Osteopetrosis A genetic and epidemiological study. Clin Genet 31:86–90PubMedGoogle Scholar
  44. 44.
    Van Hul E, Gram J, Bollerslev J, Van Wesenbeeck L, Mathysen D, Andersen PE, Vanhoenacker F, Van Hul W (2002) Localization of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12-13. J Bone Miner Res 17:1111–1117PubMedGoogle Scholar
  45. 45.
    Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771PubMedGoogle Scholar
  46. 46.
    Johnson ML, Harnish K, Nusse R, Van Hul W (2004) LRP5 and Wnt Signaling: A Union Made for Bone. J Bone Miner Res 19:1749–1757PubMedGoogle Scholar
  47. 47.
    Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19CrossRefPubMedGoogle Scholar
  48. 48.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521CrossRefPubMedGoogle Scholar
  49. 49.
    Boyden LM, Insogna K, Lifton RP (2004) High-bone-mass disease and LRP5 (author’s reply). N Engl J Med 350:2098–2099Google Scholar
  50. 50.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523CrossRefPubMedGoogle Scholar
  51. 51.
    Bollerslev J, (1989) Autosomal dominant osteopetrosis: bone metabolism and epidemiological, clinical, and hormonal aspects. Endocr Rev 10:45–67PubMedCrossRefGoogle Scholar
  52. 52.
    Bollerslev J, Mosekilde L (1993) Autosomal dominant osteopetrosis. Clin Orthop (294):45–51Google Scholar
  53. 53.
    Benichou O, Laredo J, de Vernejoul MC (2000) Type II autosomal dominant osteopetrosis (Albers-Schönberg disease): clinical and radiological manifestations in 42 patients. Bone 26:87–93PubMedGoogle Scholar
  54. 54.
    Waguespack SG, Buckwalter KA, Econs MJ (2000) Autosomal dominant osteopetrosis: clinical severity and natural history. J Bone Miner Res 15:S1;S578Google Scholar
  55. 55.
    Thomson J (1949) Osteopetrosis in successive generations. Arch Dis Child 24:143–148PubMedGoogle Scholar
  56. 56.
    Walpole IR, Nicoll A, Goldblatt J (1990) Autosomal dominant osteopetrosis type II with “malignant” presentation: further support for heterogeneity? Clin Genet 38:257–263PubMedGoogle Scholar
  57. 57.
    Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, Johnson M, Kocisko M, Evans WE, Foroud T, Econs MJ (2003) Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res 18:1513–1518PubMedGoogle Scholar
  58. 58.
    Letizia C, Taranta A, Migliaccio S, Caliumi C, Diacinti D, Delfini E, D’Erasmo E, Iacobini M, Roggini M, Albagha OM, Ralston SH, Teti A (2004) Type II benign osteopetrosis (Albers-Schonberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif Tissue Int 74:42–46PubMedGoogle Scholar
  59. 59.
    Flanagan AM, Massey HM, Wilson C, Vellodi A, Horton MA, Steward CG (2002) Macrophage colony-stimulating factor and receptor activator NF-kappaB ligand fail to rescue osteoclast-poor human malignant infantile osteopetrosis in vitro. Bone 30:85–90CrossRefPubMedGoogle Scholar
  60. 60.
    Monaghan BA, Kaplan FS, August CS, Fallon MD, Flannery DB (1991) Transient infantile osteopetrosis. J Pediatr 118:252–256PubMedGoogle Scholar
  61. 61.
    Whyte MP (1993) Carbonic anhydrase II deficiency. Clin Orthop 294:52–63PubMedGoogle Scholar
  62. 62.
    Sly WS, Sato S, Zhu XL (1991) Evaluation of carbonic anhydrase isozymes in disorders involving osteopetrosis and/or renal tubular acidosis. Clin Biochem 24:311–318PubMedCrossRefGoogle Scholar
  63. 63.
    Strisciuglio P, Hu PY, Lim EJ, Ciccolella J, Sly WS (1998) Clinical and molecular heterogeneity in carbonic anhydrase II deficiency and prenatal diagnosis in an Italian family. J Pediatr 132:717–720PubMedGoogle Scholar
  64. 64.
    Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS (2004) Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 24:272CrossRefPubMedGoogle Scholar
  65. 65.
    Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, Ozen S, Mocan H, Shah GN, Sly WS, Karet FE (2003) A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet 40:115–121CrossRefPubMedGoogle Scholar
  66. 66.
    Steward CG (2003) Neurological aspects of osteopetrosis. Neuropathol Appl Neurobiol 29:87–97CrossRefPubMedGoogle Scholar
  67. 67.
    Ambler MW, Trice J, Grauerholz J, O’Shea PA (1983) Infantile osteopetrosis and neuronal storage disease. Neurology 33:437–441PubMedGoogle Scholar
  68. 68.
    Jagadha V, Halliday WC, Becker LE, Hinton D (1988) The association of infantile osteopetrosis and neuronal storage disease in two brothers. Acta Neuropathol (Berl) 75:233–240Google Scholar
  69. 69.
    Rees H, Ang LC, Casey R, George DH (1995) Association of infantile neuroaxonal dystrophy and osteopetrosis: a rare autosomal recessive disorder. Pediatr Neurosurg 22:321–327PubMedCrossRefGoogle Scholar
  70. 70.
    Fitch N, Carpenter S, Lachance RC (1973) Prenatal axonal dystrophy and osteopetrosis. Arch Pathol 95:298–301PubMedGoogle Scholar
  71. 71.
    Lehman RA, Reeves JD, Wilson WB, Wesenberg RL (1977) Neurological complications of infantile osteopetrosis. Ann Neurol 2:378–384CrossRefPubMedGoogle Scholar
  72. 72.
    el Khazen N, Faverly D, Vamos E, Van Regemorter N, Flament-Durand J, Carton B, Cremer-Perlmutter N (1986) Lethal osteopetrosis with multiple fractures in utero. Am J Med Genet 23:811–819PubMedGoogle Scholar
  73. 73.
    Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285PubMedGoogle Scholar
  74. 74.
    Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le Deist F, Durand P, Doffinger R, Smahi A, Israel A, Courtois G, Brousse N, Blanche S, Munnich A, Fischer A, Casanova JL, Bodemer C (2002) Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 109:e97CrossRefPubMedGoogle Scholar
  75. 75.
    Mansour S, Woffendin H, Mitton S, Jeffery I, Jakins T, Kenwrick S, Murday VA (2001) Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 99:172–177CrossRefPubMedGoogle Scholar
  76. 76.
    Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, Casanova JL, Israel A (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11:2371–2375CrossRefPubMedGoogle Scholar
  77. 77.
    Yarali N, Fisgin T, Duru F, Kara A (2003) Osteopetrosis and Glanzmann’s thrombasthenia in a child. Ann Hematol 82:254–256PubMedGoogle Scholar
  78. 78.
    Nair S, Ghosh K, Kulkarni B, Shetty S, Mohanty D (2002) Glanzmann’s thrombasthenia: updated. Platelets 13:387–393CrossRefPubMedGoogle Scholar
  79. 79.
    McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440PubMedCrossRefGoogle Scholar
  80. 80.
    Horton MA, Massey HM, Rosenberg N, Nicholls B, Seligsohn U, Flanagan AM (2003) Upregulation of osteoclast alpha2beta1 integrin compensates for lack of alphavbeta3 vitronectin receptor in Iraqi-Jewish-type Glanzmann thrombasthenia. Br J Haematol 122:950–957CrossRefPubMedGoogle Scholar
  81. 81.
    Lerman-Sagie T, Levi Y, Kidron D, Grunebaum M, Nitzan M (1987) Syndrome of osteopetrosis and muscular degeneration associated with cerebro-oculo-facio-skeletal changes. Am J Med Genet 28:137–142CrossRefPubMedGoogle Scholar
  82. 82.
    Ben Hamouda H, Sfar MN, Braham R, Ben Salah M, Ayadi A, Soua H, Hamza H, Sfar MT (2001) Association of severe autosomal recessive osteopetrosis and Dandy-Walker syndrome with agenesis of the corpus callosum. Acta Orthop Belg 67:528–532PubMedGoogle Scholar
  83. 83.
    Migliaccio S, Luciani M, Taranta A, De Rossi G, Minisola S, El Hachem M, Bosman C, De Felice L, Boldrini R, Corsi A, Bianco P, Teti A (1999) Association of intermediate osteopetrosis with poikiloderma. J Bone Miner Res 14:834–836PubMedGoogle Scholar
  84. 84.
    Friede H, Manaligod JR, Rosenthal IM (1985) Craniofacial abnormalities in osteopetrosis with precocious manifestations: report of a case with serial cephalometric roentgenograms. J Craniofac Genet Dev Biol 5:247–257PubMedGoogle Scholar
  85. 85.
    Krimmel M, Niemann G, Will B, Reinert S (2004) Surgical correction of craniosynostosis in malignant osteopetrosis. J Craniofac Surg 15:218–220; discussion 221PubMedGoogle Scholar
  86. 86.
    Van Wesenbeeck L, Van Hul W Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology. Crit Rev Eukaryot Gene Expr in pressGoogle Scholar
  87. 87.
    Motyckova G, Fisher DE (2002) Pycnodysostosis: role and regulation of cathepsin K in osteoclast function and human disease. Curr Mol Med 2:407–421CrossRefPubMedGoogle Scholar
  88. 88.
    Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238PubMedGoogle Scholar
  89. 89.
    Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222PubMedGoogle Scholar
  90. 90.
    Bollerslev J, Marks SC, Jr., Pockwinse S, Kassem M, Brixen K, Steiniche T, Mosekilde L (1993) Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis. Bone 14:865–869CrossRefPubMedGoogle Scholar
  91. 91.
    Hausler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, Rubin JS, Gillespie MT (2004) Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 19:1873–1881PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Medical GeneticsUniversity and University Hospital of AntwerpBelgium

Personalised recommendations