Calcified Tissue International

, Volume 75, Issue 4, pp 321–328 | Cite as

Effect of the Proportion of Organic Material in Bone on Thermal Decomposition of Bone Mineral: An Investigation of a Variety of Bones from Different Species Using Thermogravimetric Analysis coupled to Mass Spectrometry, High-Temperature X-ray Diffraction, and Fourier Transform Infrared Spectroscopy

  • L. D. Mkukuma
  • J. M. S. Skakle
  • I. R. Gibson
  • C. T. Imrie
  • R. M. Aspden
  • D. W. L. HukinsEmail author


Thermogravimetric analysis linked to mass spectrometry (TGA-MS) shows changes in mass and identifies gases evolved when a material is heated. Heating to 600°C enabled samples of bone to be classified as having a high (cod clythrum, deer antler, and whale periotic fin bone) or a low (porpoise ear bone, whale tympanic bulla, and whale ear bone) proportion of organic material. At higher temperatures, the mineral phase of the bone decomposed. High temperature X-ray diffraction (HTXRD) showed that the main solids produced by decomposition of mineral (in air or argon at 800°C to 1000°C) were β-tricalcium phosphate (TCP) and hydroxyapatite (HAP), in deer antler, and CaO and HAP, in whale tympanic bulla. In carbon dioxide, the decomposition was retarded, indicating that the changes observed in air and argon were a result of the loss of carbonate ions from the mineral. Fourier transform infrared (FTIR) spectroscopy of bones heated to different temperatures, showed that loss of carbon dioxide (as a result of decomposition of carbonate ions) was accompanied by the appearance of hydroxide ions. These results can be explained if the structure of bone mineral is represented by
$$ {\text{Ca}}_{{\text{10}} - {\text{x}}} {\text{V}}^{{\text{(Ca)}}} _{\text{x}} [({\text{PO}}_{\text{4}} )_{{\text{6}} - {\text{x}} - {\text{y}}} ({\text{HPO}}_{\text{4}} )_{\text{x}} ({\text{CO}}_{\text{3}} )_{\text{y}} ][({\text{OH}})_{{\text{2}} - {\text{x}} - {\text{y}}} ({\text{CO}}_{\text{3}} )_{\text{y}} {\text{V}}^{{\text{(OH)}}} _{\text{x}} ] $$
where V(Ca) and V(OH) correspond to vacancies on the calcium and hydroxide sites, respectively, and 2−x−y = 0.4. This general formula is consistent in describing both mature bone mineral (i.e., whale bone), with a high Ca/P molar ratio, lower HPO 4 2− content, and higher CO 3 2− content, and immature bone mineral (i.e., deer antler), with a low Ca/P ratio, higher HPO 4 2− , and lower CO 3 2− content.


Infrared spectroscopy Thermogravimetric analysis Mass spectrometry Mineral - organic content X-ray diffraction 



We thank Dr. S. Lees and Dr. S. D. Mehta for the gift of the bones used in this study. Financial support was provided by the Engineering and Physical Sciences Research Council (UK). R.M.A. was supported by a Medical Research Council Senior Fellowship.


  1. 1.
    Lees, S, Ahern, JM, Leonard, M 1983Parameters influencing the sonic velocity in compact calcified tissues of various speciesJ Acoust Soc Am742833PubMedGoogle Scholar
  2. 2.
    Young, D, Hopper, JL, Macinnis, RJ, Nowson, CA, Hoang, NH, Wark, JD 2001Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twinsOsteoporos Int12506515CrossRefPubMedGoogle Scholar
  3. 3.
    Li, B, Aspden, RM 1997Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritisOsteopores Int7450456CrossRefGoogle Scholar
  4. 4.
    Robinson, RA, Elliot, SR 1957The water content of bone. 1. The mass of water, inorganic crystals and CO2 space components in a unit volume of dog boneJ Bone Joint Surg AM38167188Google Scholar
  5. 5.
    Termine, JD 1972Mineral chemistry and skeletal biologyClin Orthop Rel Res85207241Google Scholar
  6. 6.
    Wheeler, EJ, Lewis, D 1977An X-ray study of the paracrystalline nature of bone apatiteCalci Tissue Res24243248Google Scholar
  7. 7.
    Harries, JE, Hukins, DWL, Hasnain, SS 1988Calcium environment in bone mineral determined by EXAFS spectroscopyCalcif Tissue Int43250253PubMedGoogle Scholar
  8. 8.
    Blitz, RM, Pellegrino, ED 1971The hydroxyl content of calcified tissue mineralCalcif Tissue Int36259263Google Scholar
  9. 9.
    Rey, C, Miguel, JL, Facchini, L, Legrand, AP, Glimcher, MJ 1995Hydroxyl groups in bone mineralBone16583586CrossRefPubMedGoogle Scholar
  10. 10.
    Loong, CK, Rey, C, Kuhn, LT, Combes, C, Wu, Y, Chen, SH, Glimcher, MJ 2000Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering studyBone26599602CrossRefPubMedGoogle Scholar
  11. 11.
    Pasteris, JD, Wopenka, B, Freeman, JJ, Rogers, K, Valsami-Jones, E, Houwen, JAM, Silva, MJ 2004Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterialsBiomaterials25229238CrossRefPubMedGoogle Scholar
  12. 12.
    Taylor, MG, Parker, SF, Simkiss, K, Mitchell, PCH 2001Bone mineral: evidence for hydroxyl groups by inelastic neutron scatteringPhys Chem Chem Phys315141517CrossRefGoogle Scholar
  13. 13.
    Cho, G, Wu, Y, Ackerman, JL 2003Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopyScience30011231127CrossRefPubMedGoogle Scholar
  14. 14.
    Driessens, FCM 1980Probable phase composition of the mineral in boneZ Naturforsch C35357362PubMedGoogle Scholar
  15. 15.
    Bigi, A, Cojazzi, G, Panzavolta, S, Ripamonti, A, Roveri, N, Romanello, M, Norris Suarez, K, Moro, L 1997Chemical and structural characterisation of the mineral phase from cortical and trabecular boneJ Inor Biochem684551CrossRefGoogle Scholar
  16. 16.
    Bonel, G 1972Contribution à l’étude de la carbonation des apatitesAnn Chim146588, 127144Google Scholar
  17. 17.
    Doi, Y, Koda, T, Adachi, M, Wakamatsu, N, Goto, T, Kamemizu, H, Moriwaki, Y, Suwa, Y 1995Pyrolysis-gas chromatography of carbonate apatites used for sinteringJ Biomed Mater Res2914511457PubMedGoogle Scholar
  18. 18.
    LeGeros, R, Balmain, N, Bonel, G 1986Structure and composition of the mineral phase of periosteal boneJ Chem Phys189Google Scholar
  19. 19.
    Pellegrino, ED, Biltz, RM 1972Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complexCalcif Tissue Int10128135Google Scholar
  20. 20.
    Pellegrino, ED, Biltz, RM 1968Bone carbonate and the Ca to P molar ratioNature21912611262PubMedGoogle Scholar
  21. 21.
    LeGeros, RZ, Balmain, N, Bonel, G 1987Age-related changes in mineral of rat and bovine cortical boneCalcif Tissue Int41137144PubMedGoogle Scholar
  22. 22.
    Nordstrom, EG, Karlsson, KH 1990Carbonate-doped apatiteJ Mate Science Mate Med1182184Google Scholar
  23. 23.
    Larmas, MA, Hayrynen, H, Lajunen, LHJ 1993Thermogravimetric studies on sound and carious human enamel and dentine as well as hydroxyapatiteScand J Dent Res101185191PubMedGoogle Scholar
  24. 24.
    McPherson, R, Gane, N, Bastow, TJ 1995Structural characterization of plasma-sprayed hydroxylapatite coatingsJ Mater Science Mater Med6327334Google Scholar
  25. 25.
    Lazic, S, KatanicPopovic, J, Zec, S, Miljevic, N 1996Properties of hydroxyapatite crystallized from high temperature alkaline solutionsJ Crystal Growth165124128CrossRefGoogle Scholar
  26. 26.
    Mayer, I, Cohen, H, Voegel, JC, Cuisinier, FJG 1997Synthesis, characterization and high temperature analysis of Al-containing hydroxyapatitesJ Crystal Growth172219225CrossRefGoogle Scholar
  27. 27.
    Koel, M, Kudrjasova, M, Tonsuaadu, K, Peld, M, Veiderma, M 1998Evolved gas analysis of apatite materials using thermochromatographyThermochimica Acta3222532CrossRefGoogle Scholar
  28. 28.
    Layani, JD, Mayer, I, Cuisinier, FJG 2000Carbonated hydroxyapatites precipitated in the presence of TiJ Inorg Biochem815763CrossRefPubMedGoogle Scholar
  29. 29.
    Abdelfattah, WI, Nour, FA 1993Thermal-expansion application to assess calcination of bovine hydroxyapatiteThermochimica Acta218465475CrossRefGoogle Scholar
  30. 30.
    Okamoto, Y, Hidaka, S, Yamada, Y, Ouchi, K, Miyazaki, K, Liu, SY 1998Thermal analysis of bones from ovarectomized ratsJ Biomed Mater Res41221226CrossRefPubMedGoogle Scholar
  31. 31.
    Peters, F, Schwartz, K, Epple, M 2000The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysisThermochimica Acta361131138CrossRefGoogle Scholar
  32. 32.
    Merry, JC, Gibson, IR, Best, SM, Bonfield, W 1998Synthesis and characterisation of carbonate hydroxyapatiteJ Mater Science Mater Med9779783CrossRefGoogle Scholar
  33. 33.
    Abrahams, I, Knowles, JC 1994Effects of sintering conditions on hydroxyapatite for use in medical applications—a powder diffraction studyJ Mater Chem4185188CrossRefGoogle Scholar
  34. 34.
    Gibson, IR, Rehman, I, Best, SM, Bonfield, W 2000Characterisation of the transformation from calcium-deficient apatite to β-tricalcium phosphateJ Mater Science Mater Med11533539CrossRefGoogle Scholar
  35. 35.
    Miller, LM, Vairavamurthy, V, Chance, MR, Mendelsohn, R, Paschalis, EP, Betts, F, Boskey, AL 2001In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the v4 PO 4 3− vibrationBiochim Biophys Acta15271119CrossRefPubMedGoogle Scholar
  36. 36.
    Rey, C, Shimizu, M, Collins, B, Glimcher, MJ 1991Resolution enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the v4 PO4 domainCalcif Tissue Int46384394Google Scholar
  37. 37.
    Rey, C, Renugopalakrishnan, V, Collins, B, Glimcher, MJ 1991Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during agingCalcif Tissue Int49251258PubMedGoogle Scholar
  38. 38.
    Wu, Y, Glimcher, MJ, Rey, C, Ackerman, JL 1994A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopyJ Mol Biol244423425CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. D. Mkukuma
    • 1
    • 5
  • J. M. S. Skakle
    • 2
  • I. R. Gibson
    • 3
  • C. T. Imrie
    • 2
  • R. M. Aspden
    • 1
  • D. W. L. Hukins
    • 4
    • 6
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of AberdeenForesterhillUK
  2. 2.Department of ChemistryUniversity of AberdeenAberdeenUK
  3. 3.Department of Biomedical SciencesUniversity of AberdeenForesterhillUK
  4. 4.Department of Bio-Medical Physics & Bio-EngineeringUniversity of AberdeenForesterhillUK
  5. 5.Queen Elizabeth Central HospitalBlantyre
  6. 6.School of Engineering, Mechanical EngineeringUniversity of BirminghamEdgbastonUK

Personalised recommendations