Calcified Tissue International

, Volume 76, Issue 5, pp 371–378 | Cite as

CSF-1 Induces fos Gene Transcription and Activates the Transcription Factor Elk-1 in Mature Osteoclasts

  • G.-Q. YaoEmail author
  • T. Itokawa
  • I. Paliwal
  • K. Insogna


Mice with targeted deletion of the fos gene fail to develop mature osteoclasts, reflecting an absolute requirement for the c-Fos proto-oncogene in osteoclast precursors. C-Fos is also expressed in mature osteoclasts; however, the regulation of fos in these cells has not been studied. By using cultured murine osteoclast-like cells (OCLs) we found that treatment with colony-stimulation factor 1 (CSF-1) induced a 3.9-fold increase in c-Fos rnRNA at 30 minutes and a 2.6-fold increase at 60 minutes. With use of mature osteoclasts isolated from transgenic mice expressing the bacterial Lac-Z gene under the control of the murine fos promoter, we were able to directly demonstrate transcriptional activation of fos by CSF-1 in these cells. Transcriptional activation was 2.6-fold greater at 5 minutes and 2.8-fold greater at 15 minutes in CSF-1-treated cells than in vehicle-treated cells. CSF-1 induced nuclear protein binding to the fos serum response element that was significantly attenuated by antibodies to the transcription factor Elk-1 but not by Sap-1a. Treatment of mature osteoclasts with CSF-1 for 2 hours resulted in a significant increase in the levels of nuclear c-Fos protein. These data demonstrate that CSF-1 upregulates c-fos expression in mature osteoclasts at least in part via transcriptional activation of fos. CSF-1 induced binding of Elk-1 to the fos gene serum response element appears to be part of the molecular mechanism by which this occurs.


CSF-1 fos Elk-1 Osteoclasts 


  1. 1.
    Yoshida, H, Hayashi, SI, Kunisada, T, Ogawa, M, Nishikawa, S, Okamura, H, Sudo, T, Shultz, L, Nishikawa, S 1990The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating geneNature345442444CrossRefPubMedGoogle Scholar
  2. 2.
    Soriano, P, Montgomery, C, Gese, R, Bradley, A 1991Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in miceCell64693702CrossRefPubMedGoogle Scholar
  3. 3.
    Lowe, C, Yoneda, T, Boyce, BF, Chen, H, Mundy, GR, Soriano, P 1993Osteopetrosis in src-deficient mice is due to an autonomous defect of osteoclastsProc Natl Acad Sci U S A9044854489PubMedGoogle Scholar
  4. 4.
    Boyce, B, Yoneda, T, Lowe, C, Soriano, P, Mundy, G 1992Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in miceJ Clin Invest9016221627PubMedGoogle Scholar
  5. 5.
    Weilbaecher, K, Motyckova, G, Huber, W, Takemoto, C, Hemesath, T, Xu, Y, Hershey, C, Dowland, N, Wells, A, Fisher, D 2001Linkage of M-CSF signaling to mitf, TFE3, and the osteoclast defect in mitfmi/mi miceMol Cell8749758CrossRefPubMedGoogle Scholar
  6. 6.
    Kong, Y-Y, Yoshida, H, Sarois, I, Tan, H-L, Timms, E, Capparelli, C, Morony, S, Oliveria-dos-Santos, A, Van, G, Itie, A, Khoo, W, Wakeham, A, Dunstan, C, Lacey, D, Boyle, W, Penninger, J 1999OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesisNature397315323CrossRefPubMedGoogle Scholar
  7. 7.
    Li, J, Sarosi, I, Yan, X-Q, Morony, S, Capparelli, C, Tan, H-L, McCabe, SM, Elliott, R, Scully, S, Van, G, Kaufman, S, Juan, S-C, Sun, Y, Tarpley, J, Martin, L, Christensen, K, McCabe, J, Kostenuik, P, Hsu, H, Fletcher, F, Dunstan, C, Lacey, D, Boyle, W 2000RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolismProc Natl Acad Sci U S A9715661571CrossRefPubMedGoogle Scholar
  8. 8.
    Dougall, W, Glaccum, M, Charrier, K, Rohrbach, K, Brasel, K, Smedt, T, Daro, E, Smith, J, Tometsko, M, Maliszewski, C, Armstrong, A, Shen, V, Bain, S, Cosman, D, Anderson, D, Morrissey, PJ, Peschon, J, Schuh, J 1999RANK is essential for osteoclast and lymph node developmentGenes Dev1324122424CrossRefPubMedGoogle Scholar
  9. 9.
    Grigoriadis, A, Wang, Z-Q, Cecchini, M, Hofstetter, W, Felix, R, Fleisch, H, Wagner, E 1994c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodelingScience266443448PubMedGoogle Scholar
  10. 10.
    Grigoriadis, A, Schellander, K, Wang, Z, Wagner, E 1993Osteoblasts are target cells for transformation in c-fos transgenic miceCell Biol122685701CrossRefGoogle Scholar
  11. 11.
    Sabatakos, G, Sims, N, Chen, J, Aoki, K, Kelz, M, Amling, M, Bouali, Y, Mukhopadhyay, K, Ford, K, Nestler, E, Baron, R 2000Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesisNat Med6985990CrossRefPubMedGoogle Scholar
  12. 12.
    Tulchinsky, T 2000Fos family members: regulation, structure and role in oncogenic transformationHistol Histopathol15921928PubMedGoogle Scholar
  13. 13.
    Treisman, R 1992The serum response elementTrends biochem sci17423426CrossRefPubMedGoogle Scholar
  14. 14.
    Chai, J, Tarnawski, A 2002Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healingJ Physiol Pharmacol53147157PubMedGoogle Scholar
  15. 15.
    Shaw, P, Saxton, J 2003Ternary complex factors: prime nuclear targets for mitogen-activated protein kinasesInt J Biochem Cell Biol3512101226CrossRefPubMedGoogle Scholar
  16. 16.
    Burgess, T, Qian, Y-X, Kaufamn, S, Ring, B, Van, G, Capparelli, C, Kelley, M, Hsu, H, Boyle, W, Dunstan, C, Hu, S, Lacey, D 1999The ligand for osteoprotegerin (OPGL) directly activates mature osteoclastsJ Cell Biol145527538CrossRefPubMedGoogle Scholar
  17. 17.
    Owens, J, Chambers, T 1993Macrophage colony stimulating factor (M-CSF) induces migration in osteoclasts in vitroBiochem Biophys Res Comm9514011407CrossRefGoogle Scholar
  18. 18.
    Fuller, K, Owen, J, Jagger, C, Wilson, A, Moss, R, Chambers, T 1993Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclastsJ Exp Mol17817331744CrossRefGoogle Scholar
  19. 19.
    Müller, R, Curran, T, Muller, D, Guilbert, L 1985Introduction of c-fos during myelomonocytic differentiation and macrophage proliferationNature314546548CrossRefPubMedGoogle Scholar
  20. 20.
    Wilson, N, Moss, S, Csar, X, Ward, A, Hamilton, J 1999Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activityBiochem J339517524CrossRefPubMedGoogle Scholar
  21. 21.
    Bravo, R, Neuberg, M, Burckhardt, J, Almendral, J, Wallich, R, Muller, R 1989Involvement of common and cell type-specific pathways in c-fos gene control: stable induction by cAMP in macrophagesCell48251260CrossRefGoogle Scholar
  22. 22.
    Robertson, L, Kerppola, T, Vendrell, M, Luk, D, Smeyne, R, Bocchiaro, C, Morgan, J, Curran, T 1995Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elementsNeuron14241252CrossRefPubMedGoogle Scholar
  23. 23.
    Smeyne, R, Schilling, L, Robertson, L, Luk, D, Oberdick, J, Curran, T, Morgan, J 1992fos-lacZ transgenic mice: mapping sites of gene induction in the central nervous systemNeuron81323CrossRefPubMedGoogle Scholar
  24. 24.
    Insogna, K, Sahni, M, Grey, A, Tanaka, S, Home, W, Neff, L, Mitnick, M, Levy, J, Baron, R 1997Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclastsJ Clin Invest10024762485PubMedGoogle Scholar
  25. 25.
    Grey, A, Chen, Y, Paliwal, I, Carlberg, K, Insogna, K 2000Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to CSF-1Endocrinology14121292138CrossRefPubMedGoogle Scholar
  26. 26.
    Kaplan, D, Eielson, C, Horowitz, MC, Insogna, K, Weir, E 1996Tumor necrosis factor-α induces transcription of the colony-stimulating factor-1 gene in murine osteoblastsJ Cell Physiol168199208CrossRefPubMedGoogle Scholar
  27. 27.
    Akatsu, T, Tamura, T, Takahashi, T, Udagawa, S, Tanaka, S, Sasaki, T, Yamaguchi, A, Nagata, N, Suda, T 1992Preparation and characterization of a mouse osteoclast-like multinucleated cell populationJ Bone Miner Res712971306PubMedGoogle Scholar
  28. 28.
    Curran, T, Gordon, M, Rubino, K, Sambucetti, L 1987Isolation and characterization of the c-fos (rat) cDNA and analysis of post-translational modification in vitroOncogene27984PubMedGoogle Scholar
  29. 29.
    Blattner, C, Kannouche, P, Liftin, M, Bender, K 2000UV-induced stabilization of c-fos and other short-lived mRNAsMol Cell Biol2036163625CrossRefPubMedGoogle Scholar
  30. 30.
    Faccio, R, Takeshita, S, Zallone, A, Ross, F, Teitelbaum, S 2003c-Fms and the αvβ3 integrin collaborate during osteoclast differentiationJ Clin Invest111749758CrossRefPubMedGoogle Scholar
  31. 31.
    Hipskind, RA, Btischer, D, Nordheim, A, Baccarini, M 1994Ras/MAP kinase-dependent and-independent signaling pathways target distinct ternary complex factorsGenes818031816Google Scholar
  32. 32.
    Chen, C, Clarkson, R, Xie, Y, Hume, D, Waters, M 1995Growth hormone and colony-stimulating factor 1 share multiple response elements in the c-fos promoterEndocrinology13645054516CrossRefPubMedGoogle Scholar
  33. 33.
    Matsuo, K, Owens, J, Tonko, M, Elliott, C, Chambers, T, Wagner, E 2000Fosl1 is a transcriptional target of c-Fos during osteoclast differentiationNat Genet24184186CrossRefPubMedGoogle Scholar
  34. 34.
    Takayanagi, H, Kim, S, Matsuo, K, Suzuki, H, Suzuki, T, Sato, K, Yokochi, T, Oda, H, Nakamura, K, Ida, N, Wagner, E, Taniguchi, T 2002RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-betaNature416744749CrossRefPubMedGoogle Scholar
  35. 35.
    David, J, Rincon, M, Neff, L, Home, W, Baron, R 2001Carbonic anhydrase II is an AP-1 target gene in osteoclastsJ Cell Physiol1888997CrossRefPubMedGoogle Scholar
  36. 36.
    Fleischmann, A, Hvalby, O, Jensen, V, Strekalova, T, Zacher, C, Layer, L, Kvello, A, Reschke, M, Spanagel, R, Sprengel, R, Wagner, E, Gass, P 2003Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNSJ Neurosci2391161122PubMedGoogle Scholar
  37. 37.
    Roberston, L, Kerppola, T, Vendrell, M, Luk, D, Smeyne, R, Bocchiaro, C, Morgan, J, Curran, T 1995Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elementsNeuron14241252CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Section of Comparative MedicineSection of Endocrinology Yale School of MedicineNew HavenUSA
  2. 2.Department of MedicineSection of Endocrinology Yale School of MedicineNew HavenUSA

Personalised recommendations