Calcified Tissue International

, Volume 75, Issue 1, pp 23–31 | Cite as

Relationship Between Computed Tomographic Image Analysis and Histomorphometry for Microarchitectural Characterization of Human Calcaneus

  • B. Cortet
  • D. Chappard
  • N. Boutry
  • P. Dubois
  • A. Cotten
  • X. Marchandise


The present study aimed to characterize the relationships between several variables reflecting bone microarchitecture assessed by both computed tomographic (CT) image analysis and histomorphometry (conventional CT system) at the calcaneus. A total of 24 cadaveric specimens were studied. The mean age at death was 78 ± 10 years (range, 53–93 years). A total of 15 sagittal sections (1 mm in width and spaced 2 mm apart) were selected for CT analysis; 6 undecalcified sections (7 μm) were analyzed for histomorphometry. The histomorphometric analysis was performed on a Leica Quantimet Q570 image analyzer. Features measured by both methods were: bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), interconnectivity index (ICI), number of nodes (N Nd), number of terminus (N Tm), node-to-node strut count (NNS), node-to-terminus strut count (NTS), terminus-to-terminus strut count (TTS), marrow space star volume (SV), Euler number (EN), and fractal dimension (FD). The coefficient of correlations’ values (simple linear regression) between histomorphometry and CT image analysis varied according to the parameters selected. R values were high for BV/TV, Tb.N, and Tb.Sp (range, 0.69–0.90; P < 0.01). R values were less significant for some variables also obtained from the binary image: SV (0.5, P < 0.05) and EN (0.43, P < 0.05). Finally R values were also significant for (two) variables obtained from skeletonized images, i.e., N Nd (0.4, P < 0.05) and N Tm (0.61, P < 0.01). Other correlations were not statistically significant. Moreover, for some variables the relationships between the two methods (CT analysis and histomorphometry) seemed best-described by using nonlinear models. For example, a logarithmic model was more appropriate for SV (r = 0.71, P < 0.01), N Nd (r = 0.52, P < 0.01). Finally the relationship between apparent (App) N Tm and N Tm was most satisfying when using an exponential model (r = 0.64, P < 0.01). In conclusion, trabecular bone structure measures determined on CT images show highly significant correlations with those determined using histomorphometry. The level of correlation varies according to the type of method used for characterizing bone structure, however, and the strongest correlations were found for the most basic features (Parfitt’s parameters). Finally, for some variables, nonlinear models seem more appropriate.


Computed tomography Histomorphometry Bone microarchitecture Bone texture analysis Bone mineral density 



This work was supported by a grant from the French Society of Rheumatology.


  1. 1.
    Parfitt, AM, Mathews, CHE, Villanueva, AR, Kleerekoper, M, Frame, B, Raos, DS 1983Relationship between surface volume and thickness of iliac trabecular bone in aging and in osteoporosis: implication for the microanatomic and cellular mechanism of bone lossJ Clin Invest7213961409PubMedGoogle Scholar
  2. 2.
    Compston, JE, Mellish, RWE, Garrahan, NJ 1987Age-related changes in iliac crest trabecular micro-anatomic bone in manBone8289312CrossRefPubMedGoogle Scholar
  3. 3.
    Croucher, PI, Garrahan, NJ, Compston, JE 1996Assessment of cancellous bone structure: comparison of strut analysis trabecular bone pattern factor and marrow space star volumeJ Bone Miner Res7955961Google Scholar
  4. 4.
    Vesterby, A, Gundersen, HJG, Melsen, F 1989Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variationBone10713CrossRefPubMedGoogle Scholar
  5. 5.
    Hahn, M, Vogel, M, Pompesius-Kempa, M, Delling, G 1992Trabecular bone pattern factor. A new parameter for simple quantification of bone microarchitectureBone13327330CrossRefPubMedGoogle Scholar
  6. 6.
    Kleerekoper, M, Villanueva, AR, Stanciu, J, Rao, DS, Parfitt, AM 1985The role of three dimensional trabecular microstructure in the pathogenesis of vertebral compression fracturesCalcif Tissue Int37594597PubMedGoogle Scholar
  7. 7.
    Chappard, D, Legrand, E, Pascaretti, C, Basle, MF, Audran, M 1999Comparison of eight histomorphometric methods for measuring trabecular bone architecture by image analysis on histological sectionsMicrosc Res Tech45303312CrossRefGoogle Scholar
  8. 8.
    Chevalier, F, Laval-Jeantet, AM, Laval-Jeantet, M, Bergot, C 1992CT image analysis of the vertebral trabecular network in vivoCalcif Tissue Int51813PubMedGoogle Scholar
  9. 9.
    Ito, M, Ohki, M, Hayashi, K, Yamada, M, Uetani, M, Nakamura, T 1995Trabecular texture analysis in the relationship with spinal fractureRadiology1945559PubMedGoogle Scholar
  10. 10.
    Gordon, CL, Webber, CE, Adachi, JD, Christoforou, N 1996In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography imagesPhys Med Biol41495508CrossRefPubMedGoogle Scholar
  11. 11.
    Müller, R, Hahn, M, Vogel, M, Delling, G, Rüegsegger, P 1996Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sectionsBone18215320CrossRefPubMedGoogle Scholar
  12. 12.
    Müller, R, Hildebrand, T, Haüselmann, HJ, Rüegsegger, P 1996In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCTJ Bone Miner Res1117451751PubMedGoogle Scholar
  13. 13.
    Cortet, B, Dubois, P, Boutry, N, Cotten, A, Marchandise, X 1999Image analysis of the distal radius trabecular network using computed tomographyOsteoporosos Int9410419CrossRefGoogle Scholar
  14. 14.
    Cortet, B, Dubois, P, Boutry, N, Varlet, E, Cotten, A, Marchandise, X 2000Does high resolution computed tomography image analysis of the distal radius provide information independent of bone massJ Clin Densitom3339351CrossRefPubMedGoogle Scholar
  15. 15.
    Gordon, CL, Webber, CE, Christoforou, N, Nahmias, C 1997In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance imagesMed Phys24585593CrossRefPubMedGoogle Scholar
  16. 16.
    Majumdar, S, Genant, HK, Grampp, S, Newitt, DC, Truong, V-H, Lin, JC, Mathur, A 1997Correlation of trabecular bone structure with age bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imagingJ Bone Miner Res12111118PubMedGoogle Scholar
  17. 17.
    Link, TM, Majumdar, S, Augat, P, Lin, JC, Newitt, D, Lu, Y, Lane, NE, Genant, HK 1998In vivo high resolution MRI of the calcaneus differences in trabecular structure in osteoporosis patientsJ Bone Miner Res1311751182PubMedGoogle Scholar
  18. 18.
    Majumdar, S, Link, T, Augat, P, Lin, J, Newitt, D, Lane, N, Genant, HK 1999Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femurOsteoporos Int10231239CrossRefPubMedGoogle Scholar
  19. 19.
    Link, TM, Lotter, A, Beyer, F, Christiansen, S, Newitt, D, Lu, Y, Schmid, C, Majumdar, S 2000Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging studyRadiology217855862PubMedGoogle Scholar
  20. 20.
    Link, TM, Vieth, V, Matheis, J, Newitt, D, Lu, Y, Rummeny, EJ, Majumdar, S 2002Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoportic spine fracturesEur Radiol12401408CrossRefPubMedGoogle Scholar
  21. 21.
    Cortet, B, Dubois, P, Boutry, N, Palos, G, Cotten, A, Marchandise, X 2002Computed tomography image analysis of the calcaneus in male osteoporosisOsteoporos Int133341CrossRefPubMedGoogle Scholar
  22. 22.
    Boutry, N, Cortet, B, Dubois, P, Marchandise, X, Gotten, A 2003Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosisRadiology227708717PubMedGoogle Scholar
  23. 23.
    Lespessailles, E, Roux, JP, Benhamou, CL, Arlot, ME, Eynard, E, Harba, R, Padonou, C, Meunier, PJ 1998Fractal analysis of bone texture on os calcis radiographs compared with trabecular microstructure analyzed by histomorphometryCalcif Tissue Int63121125CrossRefPubMedGoogle Scholar
  24. 24.
    Cendre, E, Mitton, D, Roux, JP, Arlot, ME, Duboeuf, F, Burt-Pichat, B, Rumelhart, C, Peix, G, Meunier, PJ 1999High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanicsOsteoporos Int10353360CrossRefPubMedGoogle Scholar
  25. 25.
    Vieth, V, Link, TM, Lotter, A, Persigehl, T, Newitt, D, Heindel, W, Maiumdar, S 2001Does the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structureInvest Radiol36210217CrossRefPubMedGoogle Scholar
  26. 26.
    Link, TM, Vieth, V, Stehling, C, Lotter, A, Beer, A, Newitt, D, Majumdar, S 2003High-resolution MRI vs multislice siral CT: which techniue depicts the trabecular bone structure best?Eur Radiol13663671PubMedGoogle Scholar
  27. 27.
    Issever, AS, Vieth, V, Lotter, A, Meier, N, Laib, A, Newitt, D, Majumdar, S, Link, TM 2002Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial resolution MR imaging and multisection CTAcad Radiol913951406CrossRefPubMedGoogle Scholar
  28. 28.
    Nuzzo, S, Lafage-Proust, MH, Martin-Badosa, E, Boivin, G, Thomas, T, Alexandre, C, Peyrin, F 2002Synchrotron radiation microlomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsyJ Bone Miner Res1713721382PubMedGoogle Scholar
  29. 29.
    Marr, D, Hildreth, EC 1980Theory of edge detectionProc R Soc Lond B207187190PubMedGoogle Scholar
  30. 30.
    Hildreth, EC 1983The detection of intensity changes by computer and biological vision systemsComputer Graphics Image Process22127Google Scholar
  31. 31.
    Compston, JE 1994Connectivity of cancellous bone. Assessment and mechanical implicationsBone15463466CrossRefPubMedGoogle Scholar
  32. 32.
    Vesterby, A, Gundersen, HJG, Melsen, F 1989Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variationBone10713CrossRefPubMedGoogle Scholar
  33. 33.
    Levitz, P, Tchoubar, D 1992Disorder porous solids: from chord distributions to small angle scatteringJ Phys I France2771790CrossRefGoogle Scholar
  34. 34.
    Chappard, D, Legrand, E, Basle, MF, Fromont, P, Racineux, JL, Rebel, A, Audran, M 1996Altered trabecular architecture induced by corticosteroids: a bone histomorphometric studyJ Bone Miner Res11676785PubMedGoogle Scholar
  35. 35.
    Peleg, S, Naor, J, Hartley, R, Avnir, D 1984Multiple resolution texture analysis and classificationIEEE Trans Pattern Analysis Machine Intelligence PAMI.6661674Google Scholar
  36. 36.
    Lynch, JA, Hawkes, DJ, Buckland-Wright, JC 1991Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signaturePhys Med Biol36709722CrossRefPubMedGoogle Scholar
  37. 37.
    Le, HM, Holmes, RE, Shors, E, Rosenstein, DA 1992Computerized quantitative analysis of the interconnectivity of porous bio materialsActa Stereol11S1267272Google Scholar
  38. 38.
    Kothari, M, Keanveny, TM, Lin, JC, Newitt, DC, Genant, HK, Majumdar, S 1998Impact of spatial resolution on the prediction of trabecular architecture parametersBone22437443CrossRefPubMedGoogle Scholar
  39. 39.
    Majumdar, S, Newitt, D, Mathur, A, Osman, D, Gies, A, Chiu, E, Lotz, J, Kinney, J, Genant, H 1996Magnetic resonance imaging of trabecular bone structure in the distal radius: relationships with X-ray tomographic microscopy and biomechanicsOsteoporos Int6376385PubMedGoogle Scholar
  40. 40.
    Lin, JC, Amling, M, Newitt, DC, Selby, K, Srivastav, SK, Delling, G, Genant, HK, Majumdar, S 1998Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imagingOsteoporos Int81624CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • B. Cortet
    • 1
    • 2
  • D. Chappard
    • 3
  • N. Boutry
    • 2
    • 4
  • P. Dubois
    • 5
  • A. Cotten
    • 2
    • 4
  • X. Marchandise
    • 5
  1. 1.Department of RheumatologyUniversity-Hospital of LilleLilleFrance
  2. 2.Unité de Recherche de l’appareil locomoteur, CH & U LilleUniversity of Lille59037 LilleFrance
  3. 3.Department of Histology and EmbryologyUniversity of Angers49045 AngersFrance
  4. 4.Department of RadiologyUniversity of Angers49045 AngersFrance
  5. 5.Department of BiophysicsUniversity-Hospital of LilleLilleFrance

Personalised recommendations