Calcified Tissue International

, Volume 75, Issue 5, pp 347–357 | Cite as

SQSTM1 and Paget’s Disease of Bone

  • R. LayfieldEmail author
  • L. J. Hocking


Mutations in the Sequestosome 1 gene (SQSTM1; also known as p62) have recently been identified as the cause of 5q35-linked Paget’s disease of bone (PDB). All of the mutations identified to date affect the ubiquitin-associated (UBA) domain of SQSTM1, a region of the protein that binds noncovalently to ubiquitin. In this review we consider the possible functional significance of the SQSTM1-ubiquitin interaction, and consequences of the SQSTM1 UBA domain mutations. Clarification of the in vivo roles of SQSTM1 in bone-cell function will be central to improving our understanding of the molecular pathogenesis of PDB and related conditions.


SQSTM1 p62 Paget’s disease of bone Ubiquitin UBA domain 



We wish to acknowledge support of the Wellcome Trust (R.L.) and the Arthritis Research Campaign (L.J.H.). We thank J. Cavey and H. Majed for helpful comments on the manuscript, and M. Searle and B. Ciani for assistance in the preparation of Figure 5.


  1. 1.
    Kanis, JA 1992Pathophysiology and treatment of Paget’s disease of boneMartin DunitzLondonGoogle Scholar
  2. 2.
    Staa, TP, Selby, P, Leufkens, HG, Lyles, K, Sprafka, JM, Cooper, C 2002Incidence and natural history of Paget’s disease of bone in England and WalesJ Bone Miner Res17465471PubMedGoogle Scholar
  3. 3.
    Huvos, AG 1986Osteogenic sarcoma of bones and soft tissues in older personsA clinicopathologic analysis of 117 patients older than 60 years. Cancer5714421449Google Scholar
  4. 4.
    Montagu, MFA 1949Paget’s disease (osteitis deformans) and hereditaryAm J Hum Genet19495Google Scholar
  5. 5.
    Siris, ES 1994Epidemiological aspects of Paget’s disease: family history and relationship to other medical conditionsSemin Arth Rheum23222225CrossRefGoogle Scholar
  6. 6.
    Sofaer, JA, Holloway, SM, Emery, AE 1983A family study of Paget’s disease of boneJ Epidemiol Community Health37226231PubMedGoogle Scholar
  7. 7.
    Morales-Piga, AA, Rey-Rey, JS, Corres-Gonzalez, J, Garcia-Sagredo, JM, Lopez-Abente, G 1995Frequency and characteristics of familial aggregation of Paget’s disease of boneJ Bone Miner Res10663670PubMedGoogle Scholar
  8. 8.
    Hocking, L, Slee, F, Cundy, T, Nicholson, G, Hul, W, Ralston, SH 2000Familial Paget’s disease of bone: patterns of inheritance and frequency of linkage to chromosome 18qBone26577580CrossRefPubMedGoogle Scholar
  9. 9.
    Haslam, SI, Hul, W, Morales-Piga, A, Balemans, W, San Millan, JL, Nakatsuka, K, Willems, P, Haites, ME, Ralston, SH 1998Paget’s disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneityJ Bone Miner Res13911917PubMedGoogle Scholar
  10. 10.
    Barker, DJ 1981The epidemiology of Paget’s diseaseMetab Bone Dis Rel Res3231233CrossRefGoogle Scholar
  11. 11.
    Siris, ES 1996Seeking the elusive aetiology of Paget’s disease: a progress reportJ Bone Miner Res1115991601Google Scholar
  12. 12.
    Helfrich, MH, Hobson, RP, Grabowski, PS, Zurbriggen, A, Cosby, SL, Dickson, GR, Fraser, WD, Ooi, CG, Selby, PL, Crisp, AJ, Wallace, RG, Kahn, S, Ralston, SH 2000A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patientsJ Bone Miner Res1523152329PubMedGoogle Scholar
  13. 13.
    Shafheutle, K, Guyer, P, Kellingray, S, Barker, D, Cooper, C 1997The epidemiology of Paget’s disease in Great Britain. [abstract]Bone20O017CrossRefGoogle Scholar
  14. 14.
    Tiegs, RD, Lohse, CM, Wollan, PC, Melton, LJ 2000Long-term trends in the incidence of Paget’s disease of bone. [abstract]Bone27423427Google Scholar
  15. 15.
    Rogers, J, Jeffrey, DR, Watt, I 2002Paget’s disease in an archeological populationJ Bone Miner Res1711271134PubMedGoogle Scholar
  16. 16.
    Hughes, AE, Shearman, AM, Weber, JL, Barr, RJ, Wallace, RG, Osterberg, PH, Nevin, NC, Mollan, RA 1994Genetic linkage of familial expansile osteolysis to chromosome 18qHum Mol Genet3359361PubMedGoogle Scholar
  17. 17.
    Cody, JD, Singer, FR, Roodman, GD, Otterund, B, Lewis, TB, Leppert, M, Leach, RJ 1997Genetic linkage of Paget disease of the bone to chromosome 18qAm J Hum Genet6111171122CrossRefPubMedGoogle Scholar
  18. 18.
    Hughes, AE, Ralston, SH, Marken, J, Bell, C, MacPherson, H, Wallace, RG, Hul, W, Whyte, MP, Nakatsuka, K, Hovy, L, Anderson, DM 2000Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysisNat Genet244548CrossRefPubMedGoogle Scholar
  19. 19.
    Nakatsuka, K, Nishizawa, K, Ralston, SH 2003Phenotypic Characterisation of Early Onset Paget’s Disease of Bone Caused by a 27 bp Duplication in the TNFRSF11A GeneJ Bone Miner Res1813811385PubMedGoogle Scholar
  20. 20.
    Whyte, MP, Hughes, AE 2002Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysisJ Bone Miner Res172629PubMedGoogle Scholar
  21. 21.
    Good, D, Busfield, F, Duffy, D, Lovelock, PK, Resting, JB, Cameron, DP, Shaw, JT 2001Familial Paget’s disease of bone: nonlinkage to the PDB1 and PDB2 loci on chromosomes 6p and 18q in a large pedigreeJ Bone Miner Res163338PubMedGoogle Scholar
  22. 22.
    Nance, MA, Nuttall, FQ, Econs, MJ, Lyles, KW, Viles, KD, Vance, JM, Pericak-Vance, MA, Speer, MC 2000Heterogeneity in Paget disease of the boneAm J Med Genet92303307CrossRefPubMedGoogle Scholar
  23. 23.
    Sparks, AB, Peterson, SN, Bell, C, Loftus, BJ, Hocking, L, Cahill, DP, Frassica, FJ, Streeten, EA, Levine, MA, Fraser, CM, Adams, MD, Broder, S, Venter, JC, Kinzler, KW, Vogelstein, B, Ralston, SH 2001Mutation screening of the TNFRSF11A gene encoding receptor activator of NF kappa B (RANK) in familial and sporadic Paget’s disease of bone and osteosarcomaCalcif Tissue Int68151155CrossRefPubMedGoogle Scholar
  24. 24.
    Whyte, MP, Obrecht, SE, Finnegan, PM, Jones, JL, Podgornik, MN, McAlister, WH, Mumm, S 2002Osteoprotegerin deficiency and juvenile Paget’s diseaseN Engl J Med347175184CrossRefPubMedGoogle Scholar
  25. 25.
    Cundy, T, Hegde, M, Naot, D, Chong, B, King, A, Wallace, R, Mulley, J, Love, DR, Seidel, J, Fawkner, M, Banovic, T, Gallon, KE, Grey, AB, Reid, IR, Middleton-Hardie, CA, Cornish, J 2002A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotypeHum Mol Genet1121192127Google Scholar
  26. 26.
    Wuyts, W, Wesenbeeck, L, Morales-Piga, A, Ralston, S, Hocking, L, Vanhoenacker, F, Westhovens, R, Verbruggen, L, Anderson, D, Hughes, A, Hul, W 2001Evaluation of the role of RANK and OPG genes in Paget’s disease of boneBone28104107CrossRefPubMedGoogle Scholar
  27. 27.
    Hocking, LJ, Herbert, CA, Nicholls, RK, Williams, F, Bennett, ST, Cundy, T, Nicholson, GC, Wuyts, W, Hul, W, Ralston, SH 2001Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35Am J Hum Genet6910551061CrossRefPubMedGoogle Scholar
  28. 28.
    Laurin, N, Brown, JP, Lemainque, A, Duchesne, A, Huot, D, Lacourciere, Y, Drapeau, G, Verreault, J, Raymond, V, Morissette, J 2001Paget disease of bone: mapping of two loci at 5q35-qter and 5q31Am J Hum Genet69528543CrossRefPubMedGoogle Scholar
  29. 29.
    Good, DA, Busfield, F, Fletcher, BH, Duffy, DL, Resting, JB, Andersen, J, Shaw, JT 2001Linkage of Paget disease of bone to a novel region on human chromosome 18q23Am J Hum Genet70517525CrossRefPubMedGoogle Scholar
  30. 30.
    Laurin, N, Brown, JP, Morissette, J, Raymond, V 2002Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of boneAm J Hum Genet7015821588CrossRefPubMedGoogle Scholar
  31. 31.
    Hocking, LJ, Lucas, GJA, Daroszewska, A, Mangion, J, Olavesen, M, Nicholson, GC, Ward, L, Bennett, ST, Wuyts, W, Hul, W, Ralston, SH 2002Domain specific mutations in Sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s diseaseHum Mol Genet1127352739Google Scholar
  32. 32.
    Good, DA, Busfield, F, Duffy, D, Kestin, J, Shaw, TE 2002Single base-pair deletion of gene encoding Sequestosome 1 (SQSTM1/p62) in Paget’s disease of bone. [abstract 04:13]. ANZBMS 12th Annual Scientific Meeting AdelaideAustraliaGoogle Scholar
  33. 33.
    Hocking, LJ, Lucas, GJA, Daroszewska, A, Cundy, T, Nicholson, GC, Donath, J, Walsh, J, Finlayson, C, Cavey, JR, Ciani, B, Sheppard, PW, Searle, MS, Layfield, R, Ralston, SH 2004UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis and structural consequences.J Bone Miner Res19 11221127Google Scholar
  34. 34.
    Johnson-Pais, TL, Wisdom, JH, Weldon, KS, Cody, JD, Hansen, MF, Singer, FR, Leach, RJ 2003Three novel mutations in SQSTM1 identified in familial Paget’s disease of boneJ Bone Miner Res1817481753PubMedGoogle Scholar
  35. 35.
    Geetha, T, Wooten, MW 2002Structure and functional properties of the ubiquitin binding protein p62FEBS Lett5121924CrossRefPubMedGoogle Scholar
  36. 36.
    Lallena, MJ, Diaz-Meco, MT, Bren, G, Paya, CV, Moscat, J 1999Activation of IkappaB kinase beta by protein kinase C isoformsMol Cell Biol1921802188PubMedGoogle Scholar
  37. 37.
    Sanz, L, Diaz-Meco, MT, Nakano, H, Moscat, J 2000The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathwayEMBO J1915761586CrossRefPubMedGoogle Scholar
  38. 38.
    Wooten, MW, Seibenhener, ML, Mamidipudi, V, Diaz-Meco, MT, Barker, PA, Moscat, J 2001The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factorJ Biol Chem27677097712CrossRefPubMedGoogle Scholar
  39. 39.
    Sanz, L, Sanchez, P, Lallena, MJ, Diaz-Meco, MT, Moscat, J 1999The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activationEMBO J1830443053CrossRefPubMedGoogle Scholar
  40. 40.
    Teitelbaum, SL, Ross, FP 2003Genetic regulation of osteoclast development and functionNat Rev Genet4638649Google Scholar
  41. 41.
    Hsu, H, Lacey, DL, Dunstan, CR, Solovyev, I, Colombero, A, Timms, E, Tan, HL, Elliott, G, Kelley, MJ, Sarosi, I, Wang, L, Xia, XZ, Elliott, R, Chiu, L, Black, T, Scully, S, Capparelli, C, Morony, S, Shimamoto, G, Bass, MB, Boyle, WJ 1999Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligandProc Natl Acad Sci USA9635403545CrossRefPubMedGoogle Scholar
  42. 42.
    Darnay, BG, Ni, J, Moore, PA, Aggarwal, BB 1999Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAP) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motifJ Biol Chem27477247731CrossRefPubMedGoogle Scholar
  43. 43.
    Lomaga, MA, Yeh, WC, Sarosi, I, Duncan, GS, Furlonger, C, Ho, A, Morony, S, Capparelli, C, Van, G, Kaufman, S, Heiden, A, Itie, A, Wakeham, A, Khoo, W, Sasaki, T, Cao, Z, Penninger, JM, Paige, CJ, Lacey, DL, Dunstan, CR, Boyle, WJ, Goeddel, DV, Mak, TW 1999TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signalingGenes Dev1310151024PubMedGoogle Scholar
  44. 44.
    Naito, A, Azuma, S, Tanaka, S, Miyazaki, T, Takaki, S, Takatsu, K, Nakao, K, Nakamura, K, Katsuki, M, Yamamoto, T, Inoue, J 1999Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient miceGenes Cells4353362CrossRefPubMedGoogle Scholar
  45. 45.
    McLean, W, Olsen, BR 2001Mouse models of abnormal skeletal development and homeostasisTrends Genet17S3843CrossRefPubMedGoogle Scholar
  46. 46.
    Duran, A, Serrano, M, Leitges, M, Flores, JM, Picard, S, Brown, JP, Moscat, J, Diaz-Meco, MT 2004The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesisDev Cell6303309CrossRefPubMedGoogle Scholar
  47. 47.
    Puls, A, Schmidt, S, Grawe, F, Stabel, S 1997Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding proteinProc Natl Acad Sci USA9461916196CrossRefPubMedGoogle Scholar
  48. 48.
    Wilson, MI, Gill, DJ, Perisic, O, Quinn, MT, Williams, RL 2003PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62Mol Cell123950CrossRefPubMedGoogle Scholar
  49. 49.
    Lamark, T, Perander, M, Outzen, H, Kristiansen, K, Overvatn, A, Michaelsen, E, Bjorkoy, G, Johansen, T 2003Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteinsJ Biol Chem2783456834581CrossRefPubMedGoogle Scholar
  50. 50.
    Noda, Y, Kohjima, M, Izaki, T, Ota, K, Yoshinaga, S, Inagaki, F, Ito, T, Sumimoto, H 2003Molecular recognition in dimerization between FBI domainsJ Biol Chem2784351643524CrossRefPubMedGoogle Scholar
  51. 51.
    Shin, J 1998p62 and the sequestosome, a novel mechanism for protein metabolismArch Pharm Res21629633PubMedGoogle Scholar
  52. 52.
    Kuusisto, E, Salminen, A, Alafuzoff, I 2002Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formationNeuropathol Appl Neurobiol28228237CrossRefPubMedGoogle Scholar
  53. 53.
    Zatloukal, K, Stumptner, C, Fuchsbichler, A, Heid, H, Schnoelzer, M, Kenner, L, Kleinert, R, Prinz, M, Aguzzi, A, Denk, H 2002p62 Is a common component of cytoplasmic inclusions in protein aggregation diseasesAm J Pathol160255263PubMedGoogle Scholar
  54. 54.
    Joung, I, Strominger, JL, Shin, J 1996Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domainProc Natl Acad Sci USA9359915995CrossRefPubMedGoogle Scholar
  55. 55.
    Ponting, CP, Blake, DJ, Davies, KE, Kendrick-Jones, J, Winder, SJ 1996ZZ and TAZ: new putative zinc fingers in dystrophin and other proteinsTrends Biochem Sci211113CrossRefPubMedGoogle Scholar
  56. 56.
    Rechsteiner, M, Rogers, SW 1996PEST sequences and regulation by proteolysisTrends Biochem Sci21267271CrossRefPubMedGoogle Scholar
  57. 57.
    Aono, J, Yanagawa, T, Itoh, K, Li, B, Yoshida, H, Kumagai, Y, Yamamoto, M, Ishii, T 2003Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblastsBiochem Biophys Res Commun305271277CrossRefPubMedGoogle Scholar
  58. 58.
    Hofmann, K, Bucher, P 1996The UBA domain; a sequence motif present in multiple enzyme classes of the ubiquitination pathwayTrends Biochem Sci21172173CrossRefPubMedGoogle Scholar
  59. 59.
    Hartmann-Petersen, R, Seeger, M, Gordon, C 2003Transferring substrates to the 26S proteasomeTrends Biochem Sci282631CrossRefPubMedGoogle Scholar
  60. 60.
    Hershko, A, Ciechanover, A 1998The ubiquitin systemAnnu Rev Biochem67425479CrossRefPubMedGoogle Scholar
  61. 61.
    Wilkinson, KD 2000Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasomeSemin Cell Dev Biol11141148Google Scholar
  62. 62.
    Chau, V, Tobias, JW, Bachmair, A, Marriott, D, Ecker, DJ, Gonda, DK, Varshavsky, A 1989A multiubiquitin chain is confined to specific lysine in a targeted short-lived proteinScience24315761583PubMedGoogle Scholar
  63. 63.
    Johnson, ES, Ma, PC, Ota, IM, Varshavsky, A 1995A proteolytic pathway that recognizes ubiquitin as a degradation signalJ Biol Chem2701744217456CrossRefPubMedGoogle Scholar
  64. 64.
    Thrower, JS, Hoffman, L, Rechsteiner, M, Pickart, CM 2000Recognition of the polyubiquitin proteolytic signalEMBO J1994102CrossRefPubMedGoogle Scholar
  65. 65.
    Galan, JM, Haguenauer-Tsapis, R 1997Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane proteinEMBO J1658475854CrossRefPubMedGoogle Scholar
  66. 66.
    Spence, J, Sadis, S, Haas, AL, Finley, D 1995A ubiquitin mutant with specific defects in DNA repair and multiubiquitinationMol Cell Biol1512651273PubMedGoogle Scholar
  67. 67.
    Deng, L, Wang, C, Spencer, E, Yang, L, Braun, A, You, J, Slaughter, C, Pickart, C, Chen, ZJ 2000Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chainCell103351361CrossRefPubMedGoogle Scholar
  68. 68.
    Wang, C, Deng, L, Hong, M, Akkaraju, GR, Inoue, J, Chen, ZJ 2001TAK1 is a ubiquitin-dependent kinase of MKK and IKKNature412346351CrossRefPubMedGoogle Scholar
  69. 69.
    Mizukami, J, Takaesu, G, Akatsuka, H, Sakurai, H, Ninomiya-Tsuji, J, Matsumoto, K, Sakurai, N 2002Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6Mol Cell Biol229921000CrossRefPubMedGoogle Scholar
  70. 70.
    Trompouki, E, Hatzivassiliou, E, Tsichritzis, T, Fanner, H, Ashworth, A, Mosialos, G 2003CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family membersNature424793796CrossRefPubMedGoogle Scholar
  71. 71.
    Kovalenko, A, Chable-Bessia, C, Cantarella, G, Israel, A, Wallach, D, Courtois, G 2003The tumour suppressor CYLD negatively regulates NF-kappaB signaling by deubiquitinationNature424801805CrossRefPubMedGoogle Scholar
  72. 72.
    Bertolaet, BL, Clarke, DJ, Wolff, M, Watson, MH, Henze, M, Divita, G, Reed, SI 2001UBA domains of DNA damage-inducible proteins interact with ubiquitinNat Struct Biol8417422CrossRefPubMedGoogle Scholar
  73. 73.
    Wilkinson, CR, Seeger, M, Hartmann-Petersen, R, Stone, M, Wallace, M, Semple, C, Gordon, C 2001Proteins containing the UBA domain are able to bind to multi-ubiquitin chainsNat Cell Biol3339343CrossRefPubMedGoogle Scholar
  74. 74.
    Chen, L, Shinde, U, Ortolan, TG, Madura, K 2001Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assemblyEMBO Rep2933938CrossRefPubMedGoogle Scholar
  75. 75.
    Funakoshi, M, Sasaki, T, Nishimoto, T, Kobayashi, H 2002Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasomeProc Natl Acad Sci USA99745750CrossRefPubMedGoogle Scholar
  76. 76.
    Hofmann, K, Bucher, P 1996The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathwayTrends Biochem Sci21172173CrossRefPubMedGoogle Scholar
  77. 77.
    Schultz, J, Milpetz, F, Bork, P, Ponting, CP 1998SMART, a simple modular architecture research tool: identification of signaling domainsProc Natl Acad Sci USA9558575864CrossRefPubMedGoogle Scholar
  78. 78.
    Ciani, B, Layfield, R, Cavey, JR, Sheppard, PW, Searle, MS 2003Structure of the UBA domain of p62 (SQSTM1) and implications for mutations which cause Paget’s disease of boneJ Biol Chem2783740937412CrossRefPubMedGoogle Scholar
  79. 79.
    Vadlamudi, RK, Joung, I, Strominger, JL, Shin, J 1996p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteinsJ Biol Chem2712023520237CrossRefPubMedGoogle Scholar
  80. 80.
    Chen, L, Madura, K 2002Rad23 promotes the targeting of proteolytic substrates to the proteasomeMol Cell Biol2249024913CrossRefPubMedGoogle Scholar
  81. 81.
    Raasi, S, Pickart, CM 2003Rad23 UBA domains inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chainsJ Biol Chem27889518959CrossRefPubMedGoogle Scholar
  82. 82.
    Hartmann-Petersen, R, Hendil, KB, Gordon, C 2003Ubiquitin-binding proteins protect ubiquitin conjugates from disassemblyFEBS Lett5357781CrossRefPubMedGoogle Scholar
  83. 83.
    Stumptner, C, Fuchsbichler, A, Heid, H, Zatloukal, K, Denk, H 2002Mallory body-a disease-associated type of sequestosomeHepatology3510531062CrossRefPubMedGoogle Scholar
  84. 84.
    Takayanagi, H, Ogasawara, K, Hida, S, Chiba, T, Murata, S, Sato, K, Takaoka, A, Yokochi, T, Oda, H, Tanaka, K, Nakamura, K, Taniguchi, T 2000T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gammaNature408600605CrossRefPubMedGoogle Scholar
  85. 85.
    Takaesu, G, Kishida, S, Hiyama, A, Yamaguchi, K, Shibuya, H, Irie, K, Ninomiya-Tsuji, J, Matsumoto, K 2000TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathwayMol Cell5649658CrossRefPubMedGoogle Scholar
  86. 86.
    Harvey, L, Gray, T, Beneton, MNC, Douglas, DL, Kanis, JA, Russell, RGG 1982Ultrastructural features of the osteoclasts from Paget’s disease of bone in relation to a viral aetiologyJ Clin Path35771779PubMedGoogle Scholar
  87. 87.
    Klement, IA, Skinner, PJ, Kaytor, MD, Yi, H, Hersch, SM, Clark, HB, Zoghbi, HY, Orr, HT 1998Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic miceCell954153CrossRefPubMedGoogle Scholar
  88. 88.
    Saudou, F, Finkbeiner, S, Devys, D, Greenberg, ME 1998Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusionsCell955566CrossRefPubMedGoogle Scholar
  89. 89.
    Donaldson, KM, Li, W, Ching, KA, Batalov, S, Tsai, CC, Joazeiro, CA 2003Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregatesProc Natl Acad Sci USA10088928897CrossRefPubMedGoogle Scholar
  90. 90.
    Withers-Ward, ES, Jowett, JB, Stewart, SA, Xie, YM, Garfinkel, A, Shibagaki, Y, Chow, SA, Shah, N, Hanaoka, F, Sawitz, DG, Armstrong, RW, Souza, LM, Chen, IS 1997Human immunodeficiency virus type 1 Vpr interacts with HHR23A, a cellular protein implicated in nucleotide excision DNA repairJ Virol7197329742PubMedGoogle Scholar
  91. 91.
    Miao, F, Bouziane, M, Dammann, R, Masutani, C, Hanaoka, F, Pfeifer, G, O’Connor, TR 20003-Methyladenine-DNA glycosylase (MPG protein) interacts with human RAD23 proteinsJ Biol Chem2752843328438CrossRefPubMedGoogle Scholar
  92. 92.
    Bedford, FK, Kittler, JT, Muller, E, Thomas, P, Uren, JM, Merlo, D, Wisden, W, Triller, A, Smart, TG, Moss, SJ 2001GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1Nat Neurosci4908916CrossRefPubMedGoogle Scholar
  93. 93.
    Mah, AL, Perry, G, Smith, MA, Monteiro, MJ 2000Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulationJ Cell Biol151847862CrossRefPubMedGoogle Scholar
  94. 94.
    Kleijnen, MF, Alarcon, RM, Howley, PM 2003The ubiquitin-associated domain of hPLIC-2 interacts with the proteasomeMol Biol Cell1438683875Google Scholar
  95. 95.
    Bertolaet, BL, Clarke, DJ, Wolff, M, Watson, MH, Henze, M, Divita, G, Reed, SI 2001UBA domains mediate protein-protein interactions between two DNA damage-inducible proteinsJ Mol Biol313355363Google Scholar
  96. 96.
    Layfield, R, Alban, A, Mayer, RJ, Lowe, J 2001The ubiquitin protein catabolic disordersNeuropathol Appl Neurobiol27115Google Scholar
  97. 97.
    Layfield, R, Cavey, JR, Lowe, J 2003Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disordersAgeing Res Rev2343356CrossRefPubMedGoogle Scholar
  98. 98.
    Prag, G, Misra, S, Jones, EA, Ghirlando, R, Davies, BA, Horazdovsky, BF, Hurley, JH 2003Mechanism of ubiquitin recognition by the CUE domain of Vps9pCell113609620CrossRefPubMedGoogle Scholar
  99. 99.
    Falchetti, A, Di Stefano, M, Marini, F, Monte, F, Mavilia, C, Strigoli, D, Feo, ML, Isaia, G, Masi, L, Amedei, A, Cioppi, F, Ghinoi, V, Maddali Bongi, S, Di Fede, G, Sferrazza, C, Rini, GB, Melchiorre, D, Matucci-Cerinic, M, Brandi, ML 2004Two novel mutations at exon 8 of Sequestosome 1 gene (SQSTM1) in an Italian series of patients affected by Pager’s disease of bone (PDB).J Bone Miner Res19 10131017Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.School of Biomedical SciencesUniversity of Nottingham Medical School, Queen’s Medical CentreNottinghamUK
  2. 2.University of Aberdeen Medical SchoolInstitute of Medical SciencesForesterhillScotland, UK

Personalised recommendations