Calcified Tissue International

, Volume 75, Issue 6, pp 494–501 | Cite as

Diffusion Systems for Evaluation of Biomineralization



A variety of in vitro study methods have been used to elucidate the roles of matrix molecules in biomineralization processes. Among these, gel diffusion-precipitation studies have proved to be an effective tool. This methodology is uniquely capable of characterizing the effects of matrix molecules on mineralization while only using very small quantities of material. Furthermore, gel methods have been extended for use as a mineralization assay system to characterize modified matrix molecules and synthetic analogues. Here we discuss the advantages and limitations of gelatin, agar, agarose, and other systems for studying the mechanisms of biomineralization.


Hydroxyapatite Biomineralization Gel diffusion Gelatin  Agarose Agar 



The authors wish to acknowledge the help of Melin Tan, Hospital for Special Surgery, and Aryeh Keehn, Yeshiva University, for their contributions exploring single diffusion gelatin systems. Dr Boskey’s work discussed in this paper was supported by NIH grant DE04141.


  1. 1.
    Boskey, AL, Maresca, M, Ullrich, W, Doty, SB, Butler, WT, Prince, CW 1993Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gelBone Miner22147159PubMedGoogle Scholar
  2. 2.
    Boskey, AL 1995Osteopontin and related phosphorylated sialoproteins: effects on mineralizationAnn NY Acad Sci760249256PubMedGoogle Scholar
  3. 3.
    Hunter, GK, Goldberg, A 1993Nucleation of hydroxapatite by bone sialoproteinProc Natl Acad Sci USA9085628565Google Scholar
  4. 4.
    Hunter, GK, Goldberg, HA 1995The inhibitory activity of osteopontin on hydroxyapatite formation in vitroAnn NY Acad Sci760305308PubMedGoogle Scholar
  5. 5.
    Termine, JD, Kleinman, K, Whitson, SW, Conn, KM, McGarvey, ML, Martin, GR 1981Osteonectin, a bone-specific protein linking mineral to collagenCell2699105CrossRefPubMedGoogle Scholar
  6. 6.
    Hunter, GK, Hauschka, PV, Poole, AR, Rosenberg, LC, Goldberg, HA 1996Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteinsBiochem J3175964PubMedGoogle Scholar
  7. 7.
    Hunter, GK, Curtis, HA, Grynpas, MD, Simmer, JP, Fincham, AG 1999Effects of recombinant amelogenin on hydroxyapatite formation in vitroCalcif Tissue Int65226231CrossRefPubMedGoogle Scholar
  8. 8.
    Iijima, M, Moriwaki, Y, Wen, HB, Fincham, AG, Moradian-Oldak, J 2002Elongated growth of octacalcium phosphate crystals in recombinant amelogenin gels under controlled ionic flowJ Dent Res816973PubMedGoogle Scholar
  9. 9.
    Tye, CE, Rattra, KR, Warner, KJ, Gordon, JA, Sodek, J, Hunter, GK, Goldberg, HA 2003Delineation of the hydroxyapatite-nucleating domains of bone sialoproteinJ Biol Chem27879497955Google Scholar
  10. 10.
    Arias, JL, Fink, DJ, Xiao, SQ, Heuer, AH, Caplan, AI 1993Biomineralization and eggshells: cell-mediated acellular compartments of mineralized extracellular matrixInt Rev Cytol145217250Google Scholar
  11. 11.
    Gotliv, BA, Addadi, L, Weiner, S 2003Mollusk shell acidic proteins: in search of individual functionsChembiochem4522529CrossRefPubMedGoogle Scholar
  12. 12.
    Boskey, AL 1996Matrix proteins and mineralizationConnect Tissue Res35357363PubMedGoogle Scholar
  13. 13.
    Henisch, HK 1988Crystals in gels and liesegang ringsCambridge University PressCambridgeGoogle Scholar
  14. 14.
    Blumenthal, NC, Posner, AS, Silverman, LD, Rosenberg, LC 1979Effect of proteoglycans on in vitro hydroxyapatite formationCalcif Tissue Int277582PubMedGoogle Scholar
  15. 15.
    Amjad, Z, Koutsoukos, P, Tomson, MB, Nancollas, GH 1978The growth of hydroxyapatite from solution. A new constant composition methodJ Dent Res57909PubMedGoogle Scholar
  16. 16.
    Boskey, AL 1989Hydroxyapatite formation in a dynamic collagen gel system: effects of type I collagen, lipids, and proteoglycansJ Phys Chem9316281633Google Scholar
  17. 17.
    Mandel, GS, Halverson, PB, Mandel, NS 1988Calcium pyrophosphate crystal deposition: the effect of monosodium urate and apatite crystals in a kinetic study using a gelatin matrix modelScanning Microsc211891198PubMedGoogle Scholar
  18. 18.
    Mandel, NS, Mandel, GS, Carroll, DJ, Halverson, PB 1984Calcium pyrophosphate crystal deposition. An in vitro study using a gelatin matrix modelArthritis Rheum27789796PubMedGoogle Scholar
  19. 19.
    Pucar, Z, Pokric, B, Graovac, A 1974Precipitation in gels under conditions of double diffusion: critical concentrations of the precipitating componentsAnal Chem46403407Google Scholar
  20. 20.
    Boskey, AL, Maresca, M, Doty, S, Sabsay, B, Veis, A 1990Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growthBone Miner115565CrossRefPubMedGoogle Scholar
  21. 21.
    Boskey, AL, Spevak, L, Doty, SB, Rosenberg, L 1997Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in gelatin gelCalcif Tissue Int61298305CrossRefPubMedGoogle Scholar
  22. 22.
    Boskey, AL, Spevak, L, Tan, M, Doty, SB, Butler, WT 2000Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growthCalcif Tissue Int67472478CrossRefPubMedGoogle Scholar
  23. 23.
    Tartaix, PH, Doulaverakis, M, George, A,  et al. 2004In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functionsJ Biol Chem2791811518120Google Scholar
  24. 24.
    Boskey, AL, Boyan, BD, Schwartz, Z 1997Matrix vesicles promote mineralization in a gelatin gel systemCalcif Tissue Int60309315CrossRefPubMedGoogle Scholar
  25. 25.
    Greenfield, EM, Wilson, DC, Crenshaw, MA 1984Ionotropic nucleation of calcium carbonate by molluscan matrixAm Zool24925932Google Scholar
  26. 26.
    Addadi, L, Weiner, S, Geva, M 2001On how proteins interact with crystals and their effect on crystal formationZ Kardiol90392398CrossRefGoogle Scholar
  27. 27.
    Addadi, L, Weiner, S 1985Interactions between acidic proteins and crystals: stereochemical requirements in biomineralizationProc Natl Acad Sci USA8841104114Google Scholar
  28. 28.
    Hunter, GK, Kyle, CL, Goldberg, HA 1994Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formationBiochem J300723728PubMedGoogle Scholar
  29. 29.
    Goldberg, HA, Warner, KJ, Stillman, MJ, Hunter, GK 1996Determination of the hydroxyapatite-nucleating region of bone sialoproteinConnect Tissue Res35385392PubMedGoogle Scholar
  30. 30.
    Hunter, GK, Goldberg, HA 1994Modulation of crystal formation by bone phosphoproteins: role for glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoproteinBiochem J302175179PubMedGoogle Scholar
  31. 31.
    Harris, NL, Rattray, KR, Tye, CE, Underhill, TM, Somerman, MJ, D’Errico, JA, Chambers, AI, Hunter, GK, Goldberg, FA 2000Functional analysis of bone sialoprotein: identification of the hydroxyapatite-nucleating and cell-binding domains by recombhiant peptide expression and site-directed mutagenesisBone27795802CrossRefPubMedGoogle Scholar
  32. 32.
    Wada, Y, Fujisawa, R, Nodasaka, Y, Kuboki, Y 1996Electrophoretic gels of dentin matrix proteins as diffusion media for in vitro mineralizationJ Dent Res7513811387PubMedGoogle Scholar
  33. 33.
    Fujisawa, R, Kuboki, Y, Sasaki, S 1987Effects of dentin phosphophoryn on precipitation of calcium phosphate in gel in vitroCalcif Tissue Int414447Google Scholar
  34. 34.
    Boskey, AL, Maresca, M, Appel, J 1989The effects of noncollageneous matrix proteins on hydroxyapatite formation and proliferation in a collagen gel systemConnect Tissue Res21171178PubMedGoogle Scholar
  35. 35.
    Fujisawa, R, Wada, Y, Nodasaka, Y, Kuboki, Y 1996Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystalsBiochim Biophys Acta12925360CrossRefPubMedGoogle Scholar
  36. 36.
    Couchourel, D, Escoffier, C, Rohanizadeh, R, Bohic, S, Daculsi, G, Fortun, Y, Padrines, M 1999Effects of fibronectin on hydroxyapatite formationJ Inorg Biochem73129136CrossRefPubMedGoogle Scholar
  37. 37.
    Taira, T, Iijima, M, Moriwaki, Y, Kuboki, Y 1995A new method for in vitro calcification using acrylamide gel and bovine serumConnect Tissue Res33185192PubMedGoogle Scholar
  38. 38.
    Bouropoulos, N, Moradian-Oldak, J 2004Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelinJ Dent Res83278282PubMedGoogle Scholar
  39. 39.
    Iijima, M, Moriwaki, Y, Takagi, T, Moradian-Oldak, J 2001Effects of bovine amelogenins on the crystal morphology of octacalcium phosphate in a model system of tooth enamel formationJ Cryst Growth222615626CrossRefGoogle Scholar
  40. 40.
    Wen, HB, Moradian-Oldak, J, Fincham, AG 2000Dose-dependent modulation of octacalcium phosphate crystal habit by amelogininsJ Dent Res7919021906PubMedGoogle Scholar
  41. 41.
    He, G, Dahl, T, Veis, A, Geogre, A 2003Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein-1Nat Mater2552558CrossRefPubMedGoogle Scholar
  42. 42.
    Srzic, D, Pokric, B, Pucar, Z 1976Precipitation in gels under conditions of double diffusion: critical concentrations and solubility products of saltsZ Physi Chem103157164Google Scholar
  43. 43.
    Pokric, B, Pucar, Z 1979Precipitation of calcium phosphate under conditions of double diffusion in collagen and gels of gelatin and agarCalcif Tissue Int27171176PubMedGoogle Scholar
  44. 44.
    Somasundaran, P, Wang, YHC 1984Surface chemical characteristics and adsorption properties of apatiteMisra, DN eds. Adsorption on and surface chemistry of hydroxyapatitePlenum PressNew York129Google Scholar
  45. 45.
    Hughes Wassell, DT, Hall, RC, Embery, G 1995Adsorption of bovine serum albumin onto hydroxyapatiteBiomaterials16697702CrossRefPubMedGoogle Scholar
  46. 46.
    Hunter, GK, Nyburg, SC, Pritzker, KPH 1986Hydroxyapatite formation in collagen, gelatin, and agarose gelsColl Rel Res61229238Google Scholar
  47. 47.
    Eiden-Abmann, S, Viertelhaus, M, Heiß, A, Hoetzer, KA, Felsche, J 2002The influence of amino acids on the biomineralization of hydroxyapatite in gelatinJ Inorg Biochem91481486CrossRefPubMedGoogle Scholar
  48. 48.
    Fujisawa, R, Nodasake, Y, Kuboki, Y 1995Further characterization of interaction between bone sialoprotein (BSP) and collagenCalcif Tissue Int56140144PubMedGoogle Scholar
  49. 49.
    Saito, T, Yamauchi, M, Crenshaw, MA 1998Apatite induction by insoluble dentin collagenJ Bone Miner Res13265270PubMedGoogle Scholar
  50. 50.
    Saito, T, Arsenault, AL, Yamauchi, M, Kuboki, Y, Crenshaw, MA 1997Mineral induction by immobilized phosphoproteinsBone21305311CrossRefPubMedGoogle Scholar
  51. 51.
    Linde, A, Lussi, A, Crenshaw, MA 1989Mineral induction by immobilized polyanionic proteinsCalcif Tissue Int44286295PubMedGoogle Scholar
  52. 52.
    Lussi, A, Crenshaw, MA, Linde, A 1988Induction and inhibition of hydroxyapatite formation by rat dentine phosphoprotein in vitroArch oral Biol33685691CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Yeshiva UniversityNew YorkUSA
  2. 2.Starr Chair in Mineralized Tissue ResearchHospital for Special Surgery, affiliated with Weill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations