Calcified Tissue International

, Volume 74, Issue 6, pp 542–550 | Cite as

Osteoblastic Cells Express Phospholipid Receptors and Phosphatases and Proliferate in Response to Sphingosine-1-Phosphate

  • A. Grey
  • X. Xu
  • B. Hill
  • M. Watson
  • K. Callon
  • I. R. Reid
  • J. Cornish
Article

Abstract

Sphingosine-1-phosphate (S1P) is a naturally occurring polar phospholipid that exerts growth-factor–like effects in a number of cell types, potentially by endocrine, paracrine, and intracrine mechanisms. The biological actions of S1P are mediated in part by its specific binding to at least four members of the edg/lp family of G protein–coupled receptors (edg 1, 3, 6, and 8), and further regulated by the actions of specific cell membrane–bound lipid phosphate phosphatases (LPPs). Recent evidence has suggested that S1P may act as an osteoblast growth factor. In the current study, we demonstrate expression in osteoblastic cells of the S1P receptors edg 1, edg 5 and edg 8; the lipid phosphate phosphatases LPP-1, LPP-2, and LPP-3, and the S1P phosphatase mSPP1. S1P exerts dose-dependent mitogenic effects in cultures of primary rat osteoblastic cells and SaOS-2 cells. S1P also activates p42/44 mitogen-activated protein (MAP) kinases in osteoblastic cells, and the proliferative effects of S1P in these cultures are partially abrogated by PD-98059 and U-0126, specific inhibitors of p42/44 MAP kinase signaling. S1P-induced p42/44 MAP kinase activation in osteoblastic cells is dependent on functional G i proteins and intracellular calcium fluxes, but not on protein kinase A, phosphatidylinositol-3 kinase, or protein Kinase C. These data demonstrate (1) the expression by osteoblastic cells of several cell membrane–bound components of phospholipid signaling and (2) that S1P is a potent osteoblast mitogen, the proliferative action of which is mediated by a signaling pathway that involves G i proteins, intracellular calcium, and p42/44 MAP kinases.

Keywords

phospholipid osteoblast mitogenesis MAP kinase edg receptors 

Notes

Acknowledgments

Funding support from the Health Research Council of New Zealand, The New Zealand Lotteries Board, the Royal Australasian College of Physicians, and the Auckland Medical Research Foundation.

References

  1. 1.
    Pyne, S, Pyne, NJ 2000Sphingosine-1-phosphate signalling in mammalian cells.Biochem J349385402PubMedGoogle Scholar
  2. 2.
    Goetzl, EJ 2001Pleiotypic mechanisms of cellular responses to biologically active lysophospholipids.Prostaglandins Other Lipid Mediat641120CrossRefPubMedGoogle Scholar
  3. 3.
    Spiegel, S, Cuvillier, O, Edsall, LC, Kohama, T, Menzeleev, R,  et al. 1998Sphingosine-1-phosphate in cell growth and cell death.Ann N Y Acad Sci8451118PubMedGoogle Scholar
  4. 4.
    Olivera, A, Spiegel, S 1993Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens.Nature365557560PubMedGoogle Scholar
  5. 5.
    Yatomi, Y, Ruan, F, Ohta, J, Welch, RJ, Hakomori, S,  et al. 1995Quantitative measurement of sphingosine-1-phosphate in biological samples by acylation with radioactive acetic anhydride.Anal Biochem230315320PubMedGoogle Scholar
  6. 6.
    Fukushima, N, Ishii, I, Contos, JJ, Weiner, JA, Chun, J 2001Lysophospholipid receptors.Ann Rev Pharmacol Toxicol41507534CrossRefGoogle Scholar
  7. 7.
    Goetzl, EJ, An, S 1998Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine-1-phosphate.FASEB J1215891598PubMedGoogle Scholar
  8. 8.
    Brindley, DN, Waggoner, DW 1998Mammalian lipid phosphate phosphohydrolases.J Biol Chem2732428124284CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang, QX, Pilquil, CS, Dewald, J, Berthiaume, LG, Brindley, DN 2000Identification of structurally important domains of lipid phosphate phosphatase-1: implications for its sites of action.Biochem J345181184CrossRefPubMedGoogle Scholar
  10. 10.
    Mandala, SM, Thornton, R, Galve-Roperh, I, Poulton, S, Peterson, C,  et al. 2000Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death.Proc Natl Acad Sci USA9778597864CrossRefPubMedGoogle Scholar
  11. 11.
    Mandala, SM 2001Sphingosine-1-phosphate phosphatases.Prostaglandins Other Lipid Mediat64143156CrossRefPubMedGoogle Scholar
  12. 12.
    Liu, Y, Wada, R, Yamashita, T, Mi, Y, Deng, CX,  et al. 2000Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation.J Clin Invest106951961PubMedGoogle Scholar
  13. 13.
    MacLennan, AJ, Carney, PR, Zhu, WJ, Chaves, AH, Garcia, J,  et al. 2001An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine-1-phosphate receptor in neuronal excitability.Eur J Neurosci14203209CrossRefPubMedGoogle Scholar
  14. 14.
    Morita, Y, Perez, GI, Paris, F, Miranda, SR, Ehleiter, D,  et al. 2000Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy.Nat Med611091114CrossRefPubMedGoogle Scholar
  15. 15.
    Marks, SC, Hermey, DC 1996

    The structure and development of bone.

    Bilezikian, JPRaisz, LYRodan, GA eds. Principles of Bone Biology.Academic PressSan Diego315
    Google Scholar
  16. 16.
    Rodan, GA, Raisz, LY, Bilezikian, JP 1996

    Pathophysiology of osteoporosis.

    Bilezikian JP, RLRodan, GA eds. Principles of Bone Biology.Academic PressSan Diego979993
    Google Scholar
  17. 17.
    Grey, A, Banovic, T, Naot, D, Hill, B, Callon, K,  et al. 2001Lysophosphatidic acid is an osteoblast mitogen whose proliferative actions involve G(i) proteins and protein kinase C, but not P42/44 mitogen-activated protein kinases.Endocrinology14210981106PubMedGoogle Scholar
  18. 18.
    Caverzasio, J, Palmer, G, Suzuki, A, Bonjour, JP 2000Evidence for the involvement of two pathways in activation of extracellular signal-regulated kinase (Erk) and cell proliferation by Gi and Gq protein-coupled receptors in osteoblast-like cells.J Bone Miner Res1516971706Google Scholar
  19. 19.
    Dziak, R, Yang, BM, Leung, BW, Li, S, Marzec, N,  et al. 2003Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells.Prostaglandins Leukot Essent Fatty Acids68239249CrossRefPubMedGoogle Scholar
  20. 20.
    Grey, A, Chen, Q, Callon, K, Xu, X, Reid, IR,  et al. 2002The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase.Endocrinology14347554763CrossRefPubMedGoogle Scholar
  21. 21.
    Kozawa, O, Niwa, M, Matsuno, H, Tokuda, H, Miwa, M,  et al. 1999Sphingosine-1-phosphate induces heat shock protein 27 via p38 mitogen-activated protein kinase activation in osteoblasts.J Bone Miner Res1417611767PubMedGoogle Scholar
  22. 22.
    Kozawa, O, Tokuda, H, Matsuno, H, Uematsu, T 1998Sphingosine modulates interleukin-6 synthesis in osteoblasts.J Cell Biochem70338345Google Scholar
  23. 23.
    Kozawa, O, Tokuda, H, Matsuno, H, Uematsu, T 1997Activation of mitogen-activated protein kinase is involved in sphingosine-1-phosphate-stimulated interleukin-6 synthesis in osteoblasts.FEBS Lett418149151PubMedGoogle Scholar
  24. 24.
    Lyons, JM, Karin, NJ 2001A role for G protein-coupled lysophospholipid receptors in sphingolipid-induced Ca2+ signaling in MC3T3-E1 osteoblastic cells.J Bone Miner Res1620352042PubMedGoogle Scholar
  25. 25.
    Carpio, LC, Stephan, E, Kamer, A, Dziak, R 1999Sphingolipids stimulate cell growth via MAP kinase activation in osteoblastic cells.Prostaglandins Leukot Essent Fatty Acids61267273CrossRefPubMedGoogle Scholar
  26. 26.
    Cornish, J, Callon, KE, Lin, CQ, Xiao, CL, Mulvey, TB,  et al. 1998Dissociation of the effects of amylin on osteoblast proliferation and bone resorption.Am J Physiol274E827833Google Scholar
  27. 27.
    Robinson, MJ, Cobb, MH 1997Mitogen-activated protein kinase pathways.Curr Opin Cell Biol9180186PubMedGoogle Scholar
  28. 28.
    Moolenaar, WH 1995Lysophosphatidic acid signalling.Curr Opin Cell Biol7203210CrossRefPubMedGoogle Scholar
  29. 29.
    Cantrell, DA 2001Phosphoinositide 3-kinase signalling pathways.J Cell Sci11414391445Google Scholar
  30. 30.
    Vossler, MR, Yao, H, York, RD, Pan, MG, Rim, CS,  et al. 1997cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway.Cell897382PubMedGoogle Scholar
  31. 31.
    Chun, J, Contos, JJ, Munroe, D 1999A growing family of receptor genes for lysophosphatidic acid (LPA) and other lysophospholipids (LPs).Cell Biochem Biophys30213242PubMedGoogle Scholar
  32. 32.
    Moolenaar, WH 1999Bioactive lysophospholipids and their G protein-coupled receptors.Exp Cell Res253230238CrossRefPubMedGoogle Scholar
  33. 33.
    Pilquil, C, Singh, I, Zhang, QX, Ling, ZC, Buri, K,  et al. 2001Lipid phosphate phosphatase-1 dephosphorylates exogenous lysophosphatidate and thereby attenuates its effects on cell signalling.Prostaglandins Other Lipid Medial648392CrossRefGoogle Scholar
  34. 34.
    Contos, JJ, Fukushima, N, Weiner, JA, Kaushal, D, Chun, J 2000Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior.Proc Natl Acad Sci USA971338413389CrossRefPubMedGoogle Scholar
  35. 35.
    Widman, C, Gibson, S, Jarpe, MB, Johnson, GL 1999Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.Physiol Rev79143180PubMedGoogle Scholar
  36. 36.
    Cerutis, DR, Nogami, M, Anderson, JL, Churchill, JD, Romberger, DJ,  et al. 1997Lysophosphatidic acid and EGF stimulate mitogenesis in human airway smooth muscle cells.Am J Physiol273L1015PubMedGoogle Scholar
  37. 37.
    van Corven, EJ, Hordijk, PL, Medema, RH, Bos, JL, Moolenaar, WH 1993Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts.Proc Natl Acad Sci USA9012571261PubMedGoogle Scholar
  38. 38.
    Conway, AM, Pyne, NJ, Pyne, S 1997Sphingosine-1-phosphate activation of MAP kinase—involvement of PI 3-kinase and protein kinase C.Biochem Soc Trans25S585PubMedGoogle Scholar
  39. 39.
    Rakhit, S, Conway, AM, Tate, R, Bower, T, Pyne, NJ,  et al. 1999Sphingosine-1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase.Biochem J338643649CrossRefPubMedGoogle Scholar
  40. 40.
    An, S, Zheng, Y, Bleu, T 2000Sphingosine-1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5.J Biol Chem275288296CrossRefPubMedGoogle Scholar
  41. 41.
    An, S, Bleu, T, Huang, W, Hallmark, OG, Coughlin, SR,  et al. 1997Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids.FEBS Lett417279282CrossRefPubMedGoogle Scholar
  42. 42.
    Hooks, SB, Santos, WL, Im, DS, Heise, CE, Macdonald, TL,  et al. 2001Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is Edg-receptor independent.J Biol Chem27646114621CrossRefPubMedGoogle Scholar
  43. 43.
    Takeshita, A, Watanabe, A, Takada, Y, Hanazawa, S 2000Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors.J Biol Chem2753222032226CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Grey
    • 1
  • X. Xu
    • 1
  • B. Hill
    • 1
  • M. Watson
    • 1
  • K. Callon
    • 1
  • I. R. Reid
    • 1
  • J. Cornish
    • 1
  1. 1.Department of MedicineUniversity of AucklandNew Zealand

Personalised recommendations