Calcified Tissue International

, Volume 74, Issue 5, pp 458–468 | Cite as

Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro

  • J. R. Mauney
  • S. Sjostorm
  • J. Blumberg
  • R. Horan
  • J. P. O’Leary
  • G. Vunjak-Novakovic
  • V. Volloch
  • D. L. Kaplan
Article

Abstract

Bone is a dynamic tissue that is able to sense and adapt to mechanical stimuli by modulating its mass, geometry, and structure. Bone marrow stromal cells (BMSCs) are known to play an integral part in bone formation by providing an osteoprogenitor cell source capable of differentiating into mature osteoblasts in response to mechanical stresses. Characteristics of the in vivo bone environment including the three dimensional (3-D) lacunocanalicular structure and extracellular matrix composition have previously been shown to play major roles in influencing mechanotransduction processes within bone cells. To more accurately model this phenomenon in vitro, we cultured human BMSCs on 3-D, partially demineralized bone scaffolds in the presence of four-point bending loads within a novel bioreactor. The effect of mechanical loading and dexamethasone concentration on BMSC osteogenic differentiation and mineralized matrix production was studied for 8 and 16 days of culture. Mechanical stimulation after 16 days with 10 nM dexamethasone promoted osteogenic differentiation of BMSCs by significantly elevating alkaline phosphatase activity as well as alkaline phosphatase and osteopontin transcript levels over static controls. Mineralized matrix production also increased under these culture conditions. Dexamethasone concentration had a dramatic effect on the ability of mechanical stimulation to modulate these phenotypic and genotypic responses. These results provide increased insight into the role of mechanical stimulation on osteogenic differentiation of human BMSCs in vitro and may lead to improved strategies in bone tissue engineering.

Keywords

Bioreactor Tissue engineering Biomaterial 

References

  1. 1.
    Heinonen, A, Sievanen, H, Kyrolainen, H, Perttunen, J, Kannus, P 2001Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb.Bone29279285CrossRefPubMedGoogle Scholar
  2. 2.
    Tanck, E, Homminga, J, Lenthe, GH, Huiskes, R 2001Increase in bone volume fraction precedes architectural adaptation in growing bone.Bone28650654CrossRefPubMedGoogle Scholar
  3. 3.
    Burr, DB, Milgrom, C, Fyhrie, D, Forwood, M, Nyska, M,  et al. 1996In vivo measurement of human tibial strains during vigorous activity.Bone18405410CrossRefPubMedGoogle Scholar
  4. 4.
    Wang, L, Fritton, SP, Cowin, SC, Weinbaum, S 1999Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.J Biomech32663672CrossRefPubMedGoogle Scholar
  5. 5.
    Knothe Tate, ML, Steck, R, Forwood, MR, Niederer, P 2000In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation.J Exp Biol20327372745Google Scholar
  6. 6.
    MacGinitie, LA, Stanely, GD, Bieber, WA, Wu, DD 1997Bone streaming potentials and currents depend on anatomical structure and loading orientation.J Biomech3011331139CrossRefPubMedGoogle Scholar
  7. 7.
    Beck, BR, Qin, YX, McLeod, KJ, Otter, MW 2002On the relationship between streaming potential and strain in an in vivo bone preparation.Calcif Tissue Int71335343Google Scholar
  8. 8.
    Klein-Nulend, J, Semeins, CM, Burger, EH 1996Prostaglandin mediated modulation of transforming growth factor-metabolism in primary mouse osteoblastic cells in vitro.J Cell Physiol16817CrossRefPubMedGoogle Scholar
  9. 9.
    Wang, Q, Zhong, S, Ouyang, J, Jiang, L, Zhang, Z,  et al. 1998Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions.Clin Orthop348259268PubMedGoogle Scholar
  10. 10.
    Smalt, R, Mitchell, FT, Howard, RL, Chambers, TJ 1997Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain.Am J Physiol273751758Google Scholar
  11. 11.
    Hartig, M, Joos, U, Wiesmann, HP 2000Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro.Eur Biophys J29499506CrossRefPubMedGoogle Scholar
  12. 12.
    Toma, CD, Ashkar, S, Gray, ML, Schaffer, JL, Gerstenfeld, LC 1997Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts.J Bone Miner Res1216261636PubMedGoogle Scholar
  13. 13.
    Murray, D, Rushton, N 1990The effect of strain on bone cell prostaglandin E2 release: a new experimental method.Calcif Tissue Int473539Google Scholar
  14. 14.
    Neidlinger-Wilke, C, Wilke, H, Claes, L 1994Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its applications.J Orthop Res127078PubMedGoogle Scholar
  15. 15.
    Brighton, C, Strafford, B, Gross, S, Leatherwood, D, Williams, J,  et al. 1991The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain.J Bone Joint Surg73320331PubMedGoogle Scholar
  16. 16.
    Glantschnig, H, Varga, F, Rumpler, M, Klaushofer, K 1996Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells.Eur J Clin Invest26544548CrossRefPubMedGoogle Scholar
  17. 17.
    Klein-Nulend, J, Roelofsen, J, Semeins, C, Bronckers, A, Burger, E 1997Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures.J Cell Physiol170174181CrossRefPubMedGoogle Scholar
  18. 18.
    Owan, I, Burr, D, Turner, C, Qiu, J, Tu, Y,  et al. 1997Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain.Am J Physiol273810815Google Scholar
  19. 19.
    Sakai, K, Mohtai, M, Iwamoto, Y 1998Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades.Calcif Tissue Int63515520CrossRefPubMedGoogle Scholar
  20. 20.
    Westbroek, I, Ajubi, NE, Albas, MJ, Semeins, CM, Klein-Nulend, J,  et al. 2000Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow.Biochem Biophys Res Commun268414419CrossRefPubMedGoogle Scholar
  21. 21.
    Burger, EH, Klein-Nulend, J 1999Mechanotransduction in bone—role of the lacuno-canalicular network.FASEB J13S101112Google Scholar
  22. 22.
    Sikavitsas, VI, Temenoff, JS, Mikos, AG 2001Biomaterials and bone mechanotransduction.Biomaterials2225812593CrossRefPubMedGoogle Scholar
  23. 23.
    Carvalho, RS, Schaffer, JL, Gerstenfeld, LC 1998Osteoblasts induce osteopontin expression in response to attachment on fibronectin: demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation.J Cell Biochem70376390CrossRefPubMedGoogle Scholar
  24. 24.
    Davisson, T, Kunig, S, Chen, A, Sah, R, Ratcliffe, A 2002Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage.J Orthop Res20842848CrossRefPubMedGoogle Scholar
  25. 25.
    Altman, GH, Horan, RL, Martin, I, Farhadi, J, Stark, PR,  et al. 2002Cell differentiation by mechanical stress.FASEB J16270272PubMedGoogle Scholar
  26. 26.
    Kim, BS, Mooney, DJ 2000Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions.J Biomech Eng122210215CrossRefPubMedGoogle Scholar
  27. 27.
    Zimmermann, WH, Schneiderbanger, K, Schubert, P, Didie, M, Munzel, F,  et al. 2002Tissue engineering of a differentiated cardiac muscle construct.Circ Res90223230CrossRefPubMedGoogle Scholar
  28. 28.
    Tang, K, Dang, G, Guo, Z 2002The effects of intermittent hydromechanics on the differentiation and function of bone marrow stromal derived osteoblasts in porous calcium phosphate ceramics.Zhonghua Yi Xue Za Zhi82665668PubMedGoogle Scholar
  29. 29.
    Yang, Y, Magnay, JL, Cooling, L, El, HA 2002Development of a “mechano-active” scaffold for tissue engineering.Biomaterials2321192126CrossRefPubMedGoogle Scholar
  30. 30.
    Haynesworth, SE, Goshima, J, Goldberg, VM, Caplan, AI 1992Characterization of cells with osteogenic potential from human marrow.Bone138188PubMedGoogle Scholar
  31. 31.
    Prockop, DJ 1997Marrow stromal cells as stem cells for nonhematopietic tissues.Science2767174PubMedGoogle Scholar
  32. 32.
    Caplan, AI, Fink, DJ, Goto, T, Linton, AE, Young, RG,  et al. .Mesenchymal stem cells and tissue repair. The anterior cruciate ligament: current and future conceptsRaven PressN.Y.Google Scholar
  33. 33.
    Beresford, JN, Bennett, JH, Devlin, C, Leboy, PS, Owen, ME 1992Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow.J Cell Sci102341351PubMedGoogle Scholar
  34. 34.
    Wakitani, S, Goto, T, Pineda, SJ, Young, RG, Mansour, JM,  et al. 1994Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.J Bone Joint Surg76579592PubMedGoogle Scholar
  35. 35.
    Seshi, B, Kumar, S, Sellers, D 2000Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages.Blood Cells Mol Dis26234246CrossRefPubMedGoogle Scholar
  36. 36.
    Bianco, P, Gehron Robey, P 2000Marrow stromal stem cells.J Clin Invest10516631668PubMedGoogle Scholar
  37. 37.
    Thomas, GP, el Haj, AJ 1996Bone marrow stromal cells are load responsive in vitro.Calcif Tissue Int58101108Google Scholar
  38. 38.
    Yoshikawa, T, Peel, SA, Gladstone, JR, Davies, JE 1997Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation.Biomed Mater Eng7369377Google Scholar
  39. 39.
    Bancroft, GN, Sikavitsas, VI, Dolder, J, Sheffield, TL, Ambrose, CG,  et al. 2002Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner.Proc Natl Acad Sci U S A991260012605CrossRefPubMedGoogle Scholar
  40. 40.
    Wozniak, M, Fausto, A, Carron, CP, Meyer, DM, Hruska, KA 2000Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression.J Bone Miner Res1517311745PubMedGoogle Scholar
  41. 41.
    Mauney, JR, Blumberg, J, Pirun, M, Volloch, V, Vunjak-Novakovic, G,  et al. 2003Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro.Tissue Eng0000in pressGoogle Scholar
  42. 42.
    Turner, CH, Akhter, MP, Raab, DM, Kimmel, DB, Recker, RR 1991A noninvasive, in vivo model for studying strain adaptive bone modeling.Bone127379PubMedGoogle Scholar
  43. 43.
    Akhter, MP, Raab, DM, Turner, CH, Kimmel, DB, Recker, RR 1992Characterization of in vivo strain in the rat tibia during external application of a four-point bending load.J Biomech2512411246PubMedGoogle Scholar
  44. 44.
    Cullen, DM, Smith, RT, Akhter, MP 2001Bone-loading response varies with strain magnitude and cycle number.J Appl Physiol9119711976Google Scholar
  45. 45.
    Miles, RR, Turner, CH, Santerre, R, Tu, Y, McClelland, P,  et al. 1998Analysis of differential gene expression in rat tibia after an osteogenic stimulus in vivo: mechanical loading regulates osteopontin and myeloperoxidase.J Cell Biochem68355365CrossRefPubMedGoogle Scholar
  46. 46.
    Rosenthal, R, Folkman, J, Glowacki, J 1999Demineralized bone implants for nonunion fractures, bone cysts, and fibrous lesions.Clin Orthop3646169CrossRefPubMedGoogle Scholar
  47. 47.
    Vunjak-Novakovic, G, Obradovic, B, Martin, I, Bursac, PM, Langer, R,  et al. 1998Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering.Biotechnol Prog14193202CrossRefPubMedGoogle Scholar
  48. 48.
    Gere JM (1990) Mechanics of materials. PWS-KENT Pub. Co, Boston.Google Scholar
  49. 49.
    Jaiswal, N, Haynesworth, SE, Caplan, AI, Bruder, SP 1997Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.J Cell Biochem64295312PubMedGoogle Scholar
  50. 50.
    Forwood, MR, Bennett, MB, Blowers, AR, Nadorfi, RL 1998Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation.Bone23307310CrossRefPubMedGoogle Scholar
  51. 51.
    Sabokbar, A, Millett, PJ, Myer, B, Rushton, N 1994A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro.Bone Miner275767PubMedGoogle Scholar
  52. 52.
    Martin, I, Jakob, M, Schafer, D, Dick, W, Spagnoli, G,  et al. 2001Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints.Osteoarthritis Cartilage9112118CrossRefPubMedGoogle Scholar
  53. 53.
    Sato, N, Takahashi, Y, Asano, S 0000Preferential usage of bone-type leader sequence for the transcripts of liver/bone/kidney-type alkaline phosphatase gene in neutrophilic granulocytes.Blood8310931994Google Scholar
  54. 54.
    Pri-Chen, S, Pitaru, S, Lokiec, F, Savion, N 1998Basic fibroblastic growth factor enhances the growth and expression of the osteogenic phenotpe of dexamethasone-treated human bone marrow-derived bone-like cells in culture.Bone23111117CrossRefPubMedGoogle Scholar
  55. 55.
    Botchwey, EA, Pollack, SR, Levine, EM, Laurencin, CT 2001Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system.J Biomed Mater Res55242253CrossRefPubMedGoogle Scholar
  56. 56.
    Bodine, PV, Vernon, SK, Komm, BS 1996Establishment and hormonal regulation of a conditionally transformed preosteocytic cell line from adult human bone.Endocrinology13745924604PubMedGoogle Scholar
  57. 57.
    Turner, CH, Owan, I, Alvey, T, Hulman, J, Hock, JM 1998Recruitment and proliferative responses of osteoblasts after mechanical loading in vivo determined using sustained-release bromodeoxyuridine.Bone22463469CrossRefPubMedGoogle Scholar
  58. 58.
    Kostenuik, PJ, Halloran, BP, Morey-Holton, ER, Bikle, DD 1997Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells.Am J Physiol27311331139Google Scholar
  59. 59.
    Zhang, R, Supowit, SC, Klein, GL, Lu, Z, Christensen, MD,  et al. 1995Rat tail suspension reduces messenger RNA level for growth factors and osteopontin and decreases the osteoblastic differentiation of bone marrow stromal cells.J Bone Miner Res10415423PubMedGoogle Scholar
  60. 60.
    Keila, S, Pitaru, S, Grosskopf, A, Weinreb, M 1994Bone marrow from mechanically unloaded rat bones expresses reduced osteogenic capacity in vitro.J Bone Miner Res9321327PubMedGoogle Scholar
  61. 61.
    Raab-Cullen, DM, Akhter, MP, Kimmel, DB, Recker, RR 1994Periosteal bone formation stimulated by externally induced bending strains.J Bone Miner Res911431152PubMedGoogle Scholar
  62. 62.
    Turner, CH, Forwood, MR, Otter, MW 1994Mechanotransduction in bone: do bone cells act as sensors of fluid flow?FASEB J8875878PubMedGoogle Scholar
  63. 63.
    Robling, AG, Burr, DB, Turner, CH 2001Recovery periods restore mechanosensitivity to dynamically loaded bone.J Exp Biol20433893399Google Scholar
  64. 64.
    Hsieh, YF, Wang, T, Turner, CH 1999Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.Bone25379382CrossRefPubMedGoogle Scholar
  65. 65.
    Frost, HM 1987Bone “mass” and the “mechanostat”: a proposal.Anat Rec21919PubMedGoogle Scholar
  66. 66.
    Umemura, Y, Ishiko, T, Yamauchi, T, Kurono, M, Mashiko, S 1997Five jumps per day increase bone mass and breaking force in rats.J Bone Miner Res1214801485PubMedGoogle Scholar
  67. 67.
    Cooper, LF, Harris, CT, Bruder, SP, Kowalski, R, Kadiyala, S 2001Incipient analysis of mesenchymal stem-cell-derived osteogenesis.J Dent Res80314320PubMedGoogle Scholar
  68. 68.
    Aubin, JE, Liu, F, Malaval, L, Gupta, AK 1995Osteoblast and chondroblast differentiation.Bone1777S83SPubMedGoogle Scholar
  69. 69.
    Chen, J, Singh, K, Mukherjee, BB, Sodek, J 1993Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption.Matrix13113123PubMedGoogle Scholar
  70. 70.
    Carvalho, RS, Bumann, A, Schaffer, JL, Gerstenfeld, LC 2002Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation.J Cell Biochem84497508CrossRefPubMedGoogle Scholar
  71. 71.
    Beresford, JN, Joyner, CJ, Devlin, C, Triffitt, JT 1994The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro.Arch Oral Biol39941947PubMedGoogle Scholar
  72. 72.
    Frank, O, Heim, M, Jakob, M, Barbero, A, Schafer, D,  et al. 2002Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro.J Cell Biochem85737746CrossRefPubMedGoogle Scholar
  73. 73.
    Lisignoli, G, Zini, N, Remiddi, G, Piacentini, A, Puggioli, A,  et al. 2001Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold.Biomaterials2220952105CrossRefPubMedGoogle Scholar
  74. 74.
    Ozawa, S, Kasugai, S 1996Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture.Biomaterials172329CrossRefPubMedGoogle Scholar
  75. 75.
    Qiu, Q, Sayer, M, Kawaja, M, Shen, X, Davies, JE 1998Attachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces.J Biomed Mater Res42117127Google Scholar
  76. 76.
    Becerra, J, Andrades, JA, Ertl, DC, Sorgente, N, Nimni, ME 1996Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro, effect of age of cell donor.J Bone Miner Res1117031714PubMedGoogle Scholar
  77. 77.
    Harakas, NK 1984Demineralized bone-matrix-induced osteogenesis.Clin Orthop188239251PubMedGoogle Scholar
  78. 78.
    Urist, MR 1965Bone formation by autoinduction.Science150893899PubMedGoogle Scholar
  79. 79.
    Urist, MR, DeLange, RF, Finerman, GA 1983Bone cell differentiation and growth factors.Science220680686PubMedGoogle Scholar
  80. 80.
    Solheim, E 1998Osteoinduction by demineralized bone.Int Orthop22335342PubMedGoogle Scholar
  81. 81.
    Lian, JB, Stein, GS 1992Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation.Crit Rev Oral Biol Med3269305PubMedGoogle Scholar
  82. 82.
    Harter, LV, Hruska, KA, Duncan, RL 1995Human osteoblast-like cells respond to mechanical stain with increased bone matrix protein production independent of hormonal regulation.Endocrinology136528535PubMedGoogle Scholar
  83. 83.
    Kaspar, D, Seidl, W, Neidlinger-Wilke, C, Ignatius, A, Claes, L 2000Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity.J Biomech334551CrossRefPubMedGoogle Scholar
  84. 84.
    Turner, CH, Pavalko, FM 1998Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation.J Orthop Sci3346355CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. R. Mauney
    • 1
  • S. Sjostorm
    • 1
  • J. Blumberg
    • 1
  • R. Horan
    • 1
  • J. P. O’Leary
    • 2
  • G. Vunjak-Novakovic
    • 3
  • V. Volloch
    • 1
  • D. L. Kaplan
    • 1
  1. 1.Tufts University, Departments of Biomedical Engineering and Chemical and Biological EngineeringBiotechnology Center, 4 Colby Street, MedfordMassachusettsUSA
  2. 2.Tufts University, Department of Mechanical Engineering200 Anderson Hall, MedfordMassachusettsUSA
  3. 3.Massachusetts Institute of TechnologyHarvard-MIT Division of Health Sciences and TechnologyCambridgeUSA

Personalised recommendations