Calcified Tissue International

, Volume 74, Issue 2, pp 170–180 | Cite as

Characterization of Osteocalcin (BGP) and Matrix Gla Protein (MGP) Fish Specific Antibodies: Validation for Immunodetection Studies in Lower Vertebrates

  • D. C. Simes
  • M. K. Williamson
  • B. J. Schaff
  • P. J. Gavaia
  • P. M. Ingleton
  • P. A. Price
  • M. L. CancelaEmail author
Laboratory Investigations


In fish species the basic mechanisms of bone development and bone remodeling are not fully understood. The classification of bone tissue in teleosts as cellular or acellular and the presence of transitional states between bone and cartilage and the finding of different types of cartilage in teleosts not previously recognized in higher vertebrates emphasizes the need for a study on the accumulation of the Gla-containing proteins MGP and BGP at the cellular level. In the present study, polyclonal antibodies developed against BGP and MGP from A. regius (a local marine teleost fish) and against MGP from G. galeus (a Pacific Ocean shark), were tested by Western blot for their specificity against BGP and MGP from several other species of teleost fish and shark. For this purpose we extracted and purified both proteins from various marine and freshwater teleosts, identified them by N-terminal amino acid sequence analysis and confirmed the presence of gamma-carboxylation in the proteins with the use of a stain specific for Gla residues. Each antibody recognized either BGP or MGP with no cross-reaction between proteins detected. All purified fish BGPs and MGPs tested were shown to be specifically recognized, thus validating the use of these antibodies for further studies.


Migration Behavior Polyclonal Antiserum Branchial Arch Positive Immunoreaction Purify Protein Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially funded by grants from the Portuguese Science and Technology Foundation (Praxis BIA 469/94; BIA 11159/98; POCTI/CVT/42098/2001) and US Public Health Service, Grant AR25921 from the National Institutes of Health. DC Simes was the recipient of a PRODEP fellowship awarded by the Portuguese Ministry of Education. N-terminal amino acid sequences for DrBGP, HdBGP and PgMGP were submitted to SWISS-PROT database and were assigned accession numbers P83238, P83473 and P83347, respectively.


  1. 1.
    Hauschka, PV, Lian, JB, Cole, DEC, Gundberg, CM 1989Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone.Physiol Rev699901047PubMedGoogle Scholar
  2. 2.
    Ducy, P, Desbois, C, Boyce, B,  et al. 1996Increased bone formation in osteocalcin-deficient mice.Nature382448452PubMedGoogle Scholar
  3. 3.
    Luo, G, Ducy, P, McKee, MD, Pinero, GJ, Loyer, E, Behringer, RR, Karsenty, G 1997Spontaneous calcification of arteries and cartilage in mice lacking matrix gla protein.Nature3867881PubMedGoogle Scholar
  4. 4.
    Yagami, K, Suh, J-Y, Enomoto-Iwamoto, M, Koyama, E, Abrams, WR, Shapiro, IM, Pacifici, M, Iwamoto, M 1999Matrix gla protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb.J Cell Biol14710971108CrossRefPubMedGoogle Scholar
  5. 5.
    Shanahan, CM, Proudfoot, D, Farzaneh-Far, A, Weissberg, PL 1998The role of Gla proteins in vascular calcification.Crit Rev Eukaryotic Gene Express8357375Google Scholar
  6. 6.
    Price, PA, Faus, SA, Williamson, MK 1998Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves.Arterioscler Thromb Vasc Biol1814001407Google Scholar
  7. 7.
    Shanahan, CM, Cary, NRB, Salisbury, JR, Proudfoot, D, Weissberg, PL, Edmonds, M 1999Medial localization of mineralization-regulating proteins in association with monckeberg’s sclerosis, evidence for smooth cell-mediated vascular calcification.Circulation10021682176Google Scholar
  8. 8.
    Price, PA, Faus, SA, Williamson, MK 2000Warfarin-induced artery calcification is accelerated by growth and vitamin D.Arterioscler Thromb Vasc Biol20317327Google Scholar
  9. 9.
    Shanahan, CM, Proudfoot, D, Tyson, KL, Cary, NRB, Edmonds, M, Weissberg, PL 2000Expression of mineralization-regulating proteins in association with human vascular calcification.Z Kardiol896368CrossRefGoogle Scholar
  10. 10.
    Spronk, HMH, Soute, BAM, Schurgers, LJ, Cleutjens, JPM, Thijssen, HHW, De Mey, JGR, Vermeer, C 2001Matrix gla protein accumulates at the border of regions of calcification and normal tissue in the media of the arterial vessel wall.Biochem Biophys Res Commun289485490CrossRefGoogle Scholar
  11. 11.
    Otawara, Y, Price, PA 1986Developmental appearance of Matrix gla protein during calcification in rat.J Biol Chem2611082810832Google Scholar
  12. 12.
    Hale, JE, Mattew, KW, Price, PA 1991Carboxyl-terminal proteolytic processing of matrix gla protein.J Biol Chem2662114521149Google Scholar
  13. 13.
    Price, PA, Rice, JS, Williamson, MK 1994Conserved phosphorylation of serine in the Ser-X-Glu/Ser(P) sequences of the vitamin K-dependent matrix gla protein from shark, lamb, rat, cow and human.Protein Sci3822830Google Scholar
  14. 14.
    Cancela, ML, Williamson, MK, Ohresser, MCP, Reia, JP, Price, PA 2001Matrix gla protein in Xenopus laevis: molecular cloning, tissue distribution and evolutionary considerations.J Bone Miner Res1616111621Google Scholar
  15. 15.
    Simes, DC, Williamson, MK, Ortiz-Delgado, JB, Viegas, CSB, Cancela, ML, Price, PA 2003Purification of Matrix Gla Protein (MGP) from a marine teleost fish, Argyrosomus regius: calcified cartilage and not bone as the primary site of MGP accumulation in fish.J Bone Miner Res18244259Google Scholar
  16. 16.
    Nishimoto, SK, Araki, N, Robinson, FD, Waite, JH 1992Discovery of bone γ-carboxyglutamic acid protein in mineralized scales. The abundance and structure of Lepomis macrochirus bone γ-carboxyglutamic acid.J Biol Chem2671160011605Google Scholar
  17. 17.
    Cancela, ML, Williamson, MK, Price, PA 1995Amino-acid sequence of Bone Gla Protein from the African clawed toad Xenopus laevis and the fish Sparus aurata. Int J Peptide Protein Res46419423Google Scholar
  18. 18.
    Delmas, PD, Christiansen, C, Mann, KG, Price, PA 1990Bone Gla Protein (osteocalcin) assay standardization report.J Bone Miner Res5511Google Scholar
  19. 19.
    Jie, K-SG, Gijsbers, BLMG, Vermeer, C 1995A specific colorimetric staining method for γ-carboxyglutamic acid-containing proteins in polyacrylamide gels.Anal Biochem224163165CrossRefPubMedGoogle Scholar
  20. 20.
    Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular cloning: a laboratory manual.Cold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  21. 21.
    Rice, JS, Williamson, MK, Price, PA 1994Isolation and sequence of the vitamin K-dependent Matrix Gla Protein from the calcified cartilage of the soupfin shark.J Bone Miner Res9567576PubMedGoogle Scholar
  22. 22.
    Poser, JW, Price, PA 1979A method for decarboxylation of the γ-carboxyglutamic acid in proteins.J Biol Chem254431436PubMedGoogle Scholar
  23. 23.
    Fraser, JD, Price, PA 1990Induction of Matrix Gla Protein synthesis during prolonged 1,25-Dihydroxyvitamin D3 treatment of osteosarcoma cells.Calcif Tissue Int46270279PubMedGoogle Scholar
  24. 24.
    Fraser, JD, Otawara, Y, Price, PA 19881,25-Dihydroxyvitamin D3 stimulates the synthesis of matrix γ-carboxyglutamic acid protein by osteosarcoma cells.J Biol Chem263911916PubMedGoogle Scholar
  25. 25.
    Price, PA, Otsuka, AS, Poser, JW, Kristaponis, J, Raman, N 1976Characterization of a γ-carboxyglutamic acid-containing protein from bone.Proc Natl Acad Sci USA7314471451Google Scholar
  26. 26.
    Price, PA, Otsuka, AS, Poser, JW 1977Comparison of gamma-carboxyglutamic acid-containing proteins from bovine and swordfish bone: primary stucture and Ca2+ binding.Wasserman, RHCorradino, RACarafoli, EKretsinger, RHMac-Lennan, DHSiegel, FL eds. Calcium-binding proteins and calcium function.Elsevier North-HollandAmsterdam333337Google Scholar
  27. 27.
    Witten, PE 1997Enzyme histochemical characteristics of osteoblasts and mononucleated osteoclasts in a teleost fish with acellular bone (Oreochromis niloticus, Cichlidae).Cell Tissue Res287591599CrossRefPubMedGoogle Scholar
  28. 28.
    Witten, PE, Hansen, A, Hall, BK 2001Features of mono- and multinucleated bone-resorbing cells of the Zebrafish Danio rerio and their contribution to skeletal development, remodeling and growth.J Morph250197207CrossRefPubMedGoogle Scholar
  29. 29.
    Price, PA, Poser, JW, Raman, N 1976Primary structure of the gamma-carboxyglutamic acid-containing protein from bone.Proc Natl Acad Sci USA7333743375Google Scholar
  30. 30.
    Viegas, CS, Pimto, JP, Conceicao, N., Simes, DC, Cancela, ML 2002Cloning and characterization of the cDNA and gene encoding Xenopus laevis osteocalcinGene28997107CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. C. Simes
    • 1
  • M. K. Williamson
    • 2
  • B. J. Schaff
    • 1
  • P. J. Gavaia
    • 1
  • P. M. Ingleton
    • 3
  • P. A. Price
    • 2
  • M. L. Cancela
    • 1
    Email author
  1. 1.CCMAR-University of Algarve, Faro 8005-139Portugal
  2. 2.Division of BiologyUniversity of California San Diego, La Jolla, CA 92093-0368USA
  3. 3.Division of Musculo-Skeletal Medicine, Institute of EndocrinologyUniversity of Sheffield, Beech Hill Rd, Sheffield S10 2RXUK

Personalised recommendations