Calcified Tissue International

, Volume 74, Issue 2, pp 136–142

Relationship Between Lipids and Bone Mass in 2 Cohorts of Healthy Women and Men

  • S. Adami
  • V. Braga
  • M. Zamboni
  • Davide Gatti
  • M. Rossini
  • J. Bakri
  • E. Battaglia
Clinical Investigations


A number of recent findings seem to indicate that fat and bone metabolism are strictly connected. We investigated the relationship between lipid profile and bone mineral density (BMD) in 236 either pre- or postmenopausal women, aged 35–81 years, attending our osteoporosis center (“clinic group”). In order to verify the consistency of the results, 265 men and 481 women aged 68–75, participating in a population-based epidemiological investigation (“community cohort”), were also studied. Lumbar spine, femoral neck, total hip and total body BMD, total body fat, % fat mass and lean mass were measured using dual energy X-ray absorptiometry (DXA). In the clinic group, lumbar spine and hip BMD Z score values were both strongly related to all measured serum lipids: the relationship was negative for HDL cholesterol (P < 0.05) and Apo A lipoprotein (P < 0.000) and positive for LDL cholesterol (P < 0.05), Apo B lipoprotein (P < 0.001) and triglycerides (P < 0.05). When BMD values were adjusted for body weight and BMI, most relationships remained statistically significant. In the community cohort, total body and hip BMD values were strongly related in both men and women to age, body weight, height, BMI, fat mass, lean mass, % fat mass. Total body and hip BMD were significantly related to serum lipids in both women and men. The relationship was negative for HDL cholesterol and positive for total cholesterol, triglycerides and LDL cholesterol. Most of these relationships (triglycerides, HDL cholesterol, LDL/HDL cholesterol ratio in women, and all measured lipids in men) remained statistically significant (P values ranging from 0.000 to 0.03) when the BMD values were adjusted also for anthropometric measures (body weight, height, fat mass). This study demonstrates for the first time that the lipid profile is strictly related to bone mass in both men and women. The interpretation of this association remains hypothetical but it might open new perspectives for understanding the mechanisms controlling bone metabolism.


Serum lipids Bone mass Osteoporosis Bone metabolism Statins 


  1. 1.
    Bergman, RJ, Gazit, D, Kahn, AJ, Gruber, H, McDougall, S, Hahn, TJ 1996Age-related changes in osteogenic stem cells in mice.J Bone Miner Res11568577Google Scholar
  2. 2.
    Burkhardt, R, Kettner, G, Bohm, W, Schmidmeier, M, Schlag, R, Frisch, B, Mallmann, B, Eisenmenger, W, Gilg, T 1987Changes in trabecular bone, hematopoeisis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study.Bone8157164Google Scholar
  3. 3.
    Egrise, D, Martin, D, Vienne, A, Neve, P, Schoutens, A 1992The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats.Bone13355361PubMedGoogle Scholar
  4. 4.
    Majors, AK, Boehm, CA, Nitto, H, Midura, RJ, Muschler, GF 1997Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation.J Orthop Res15546557Google Scholar
  5. 5.
    Meunier, P, Aaron, J, Edouard, C, Vignon, G 1971Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies.Clin Orthop80147154PubMedGoogle Scholar
  6. 6.
    Parhami, F, Morrow, AD, Balucan, J, Leitinger, N, Watson, AD, Tintut, Y, Berliner, JA, Demer, LL 1997Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation: a possible explanation for the paradox of arterial calcification in osteoporotic patients.Arterioscler Thromb Vasc Biol17680687Google Scholar
  7. 7.
    Bruder, SP, Fink, DJ, Caplan, AI 1994Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy.J Cell Biochem56283294PubMedGoogle Scholar
  8. 8.
    Parhami, F, Jackson, SM, Tintut, Y, Le, V, Balucan, JP, Territo, M, Demer, LL 1999Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells.J Bone Miner Res1420672078PubMedGoogle Scholar
  9. 9.
    Reddi, AH 1995Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells: Maureen Owen revisited.Clin Orthop313115119PubMedGoogle Scholar
  10. 10.
    Simmons, DJ 1996The in vivo role of bone marrow fibroblast-like stromal cells.Calcif Tissue Int58129132CrossRefGoogle Scholar
  11. 11.
    Diascro, DD Jr, Vogel, RL, Johnson, TE, Witherup, KM, Pitzenberger, SM, Rutledge, SJ, Prescott, DJ, Rodan, GA, Schmidt, A 1998High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells.J Bone Miner Res1396106PubMedGoogle Scholar
  12. 12.
    Parhami, F, Mody, N, Gharavi, N, Ballard, AJ, Tintut, Y, Demer, LL 2002Role of the cholesterol biosynthetic pathway in osteoblastic differentiation of marrow stromal cells.J Bone Miner Res1719972003Google Scholar
  13. 13.
    Gong, Y, Slee, RB, Fukai, N,  et al. 2001LDL receptor-related protein 5(LPR5) affects bone accrual and eye development.Cell107513523PubMedGoogle Scholar
  14. 14.
    Little, RD, Carulli, JP, Del Mastro, RG,  et al. 2002A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone mass trait.Am J Hum Genet701119CrossRefPubMedGoogle Scholar
  15. 15.
    Gerdes, LU, Vestergaard, P, Hermann, AP, Mosekilde, L 2001Regional and hormone-dependent effects of apolipoprotein E genotype on changes in bone mineral in perimenopausal women.J Bone Miner Res1019061916Google Scholar
  16. 16.
    McFarlane, SI, Muniyappa, R, Francisco, R, Sowers, JR 2002Pleiotropic effects of statins: lipid reduction and beyond. Clinical review 145.J Clin Endocrinol Metab8714511458Google Scholar
  17. 17.
    Meier, CR, Schlienger, RG, Kraenzlin, ME, Schlegel, B, Jick, H 2000HMG-CoA reductase inhibitors and the risk of fractures.JAMA28332053210PubMedGoogle Scholar
  18. 18.
    Wang, PS, Solomon, DH, Mogan, H, Avorn, J 2000HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients.JAMA28332113216PubMedGoogle Scholar
  19. 19.
    Rossouw, JW 1999Hormone replacement therapy and cardiovascular disease.Curr Opin Lipidol10429434CrossRefGoogle Scholar
  20. 20.
    Luckman, SP, Hughes, DE, Coxon, FP, Russell, RGG, Rogers, MJ 1998Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including rats.J Bone Miner Res13581589PubMedGoogle Scholar
  21. 21.
    Adami, S, Braga, V, Guidi, GC, Gatti, D, Gerardi, D, Fracassi, E 2000Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol.J Bone Miner Res15559604Google Scholar
  22. 22.
    Adami, S, Braga, V, Gatti, D 2001Association between bone mineral density and serum lipid in men.JAMA286791792PubMedGoogle Scholar
  23. 23.
    Adami , ., Giannini, G, Giorgino, R, Isaia, GC, Maggi, S, Sinigaglia, L, Filippini, P, Crepaldi, G 2003The effect of age, weight and lifestyle factors on calcaneal quantitative ultrasound: the ESOPO study.Osteop Int14198207Google Scholar
  24. 24.
    Friedewald, WT, Levy, RI, Fredrickson, DS 1972Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.Clin Chem18499502PubMedGoogle Scholar
  25. 25.
    Pedrazzoni, ., Girasole, G .Definition of a population-specific DXA reference standard in Italian women and men: the densitometric Italian normative study (DINS).Osteop Int (in press)..for the DINS Study Group.Google Scholar
  26. 26.
    Kado, DM, Browner, WS, Blakwell, T, Gore, R, Cummings, SR 2000Rate of bone loss is associated with mortality in older women: a prospective study.J Bone Miner Res1519741980Google Scholar
  27. 27.
    Trivedi, DP, Khaw, KT 2001Bone mineral density at the hip predicts mortality in elderly men.Osteoporos Int12259265CrossRefPubMedGoogle Scholar
  28. 28.
    von der Recke, P, Hansen, MA, Hassager, C 1999The association between low bone mass at the menopause and cardiovascular mortality.Am J Med106273278CrossRefPubMedGoogle Scholar
  29. 29.
    D’Amelio, P, Pescarmona, GP, Gariboldi, A, Isaia, GC 2001High density lipoproteins (HDL) in women with postmenopausal osteoporosis: a preliminary study.Menopause8429432PubMedGoogle Scholar
  30. 30.
    Zabaglia, SF, Pedro, AO, Pinto Neto, AM, Guarisi, T, Paiva, LH, Lane, E 1998An exploratory study of the association between lipid profile and bone mineral density in menopausal women in a Campinas reference hospital.Cad Saude Pub14779786Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • S. Adami
    • 1
  • V. Braga
    • 1
  • M. Zamboni
    • 2
  • Davide Gatti
    • 1
  • M. Rossini
    • 1
  • J. Bakri
    • 1
  • E. Battaglia
    • 1
  1. 1.Rheumatology UnitValeggio S/M, University of VeronaItaly
  2. 2.Geriatric Unit, University of VeronaItaly

Personalised recommendations