Calcified Tissue International

, Volume 73, Issue 4, pp 332–338

Vitamin D Receptor Gene Polymorphism Predicts Height and Bone Size, Rather Than Bone Density in Children and Young Adults

  • I. M. van der Sluis
  • S. M. P. F. de Muinck Keizer-Schrama
  • E. P. Krenning
  • H. A. P. Pols
  • A. G. Uitterlinden
Clinical Investigation

Abstract

Peak bone mass is considered to be under strong genetic control. We studied the association among anthropometry, bone density and vitamin D receptor (VDR) genotype in an ethnically homogeneous group of 148 Caucasian children and young adults. Bone density was measured by dual energy X-ray absorptiometry (DXA) and VDR genotype was determined by a direct haplotyping procedure of the BsmI, ApaI, and TaqI restriction fragment length polymorphisms. A second DXA measurement was made after approximately 4 years. Results are expressed as age- and sex-adjusted standard deviation scores (SDS). Previously, the collagen IA1 Sp1 polymorphism was studied in this population. We found VDR genotype to be associated with a 0.4 SDS increased height per allele copy of haplotype ‘3’ (P = 0.04) and a 0.4 SDS increased width of the lumbar vertebral body in the haplotype ‘3’ allele carriers (P = 0.05). We observed a trend towards a 0.3 SDS decreased bone mineral apparent density of lumbar spine (BMAD) per copy of haplotype ‘3’ allele (P = 0.10). In contrast, no association with areal bone mineral density (BMD) was observed. In the follow-up analyses, no differences in height or bone gain among the VDR genotypes were demonstrated. By combining the risk alleles of VDR and collagen IA1 Sp1 genotype, an additive genotype effect on height (P = 0.006) and vertebral body width (P = 0.001) was found. In this exploratory study we found VDR genotype to be associated with frame size and BMAD. The VDR genotype effects on stature and bone size seem to neutralize the effect on areal BMD.

Keywords

Vitamin D receptor Polymorphism Height Bone size Bone mineral density Children Genetic factors 

References

  1. 1.
    Kelly, PJ, Harris, M 1995Review: genetic regulation of peak bone mass.Acta Paediatr4112429Google Scholar
  2. 2.
    Pocock, NA, Eisman, JA, Hopper, JL, Yeates, MG, Sambrook, PN, Eberl, S 1987Genetic determinants of bone mass in adults: a twin study.J Clin Invest80706710PubMedGoogle Scholar
  3. 3.
    Smith, DM, Nance, WE, Kang, KW, Christian, JC, Johnston, CC 1973Genetic factors in determining bone mass.J Clin Invest5228002808PubMedGoogle Scholar
  4. 4.
    Boot, AM, de Ridder, MAJ, Pols, HAP, Krenning, EP, de Muinck Keizer-Schrama, SMPF 1997Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity.J Clin Endocrinol Metab825762PubMedGoogle Scholar
  5. 5.
    Rubin, LA, Hawker, GA, Peltekova, VD, Fielding, LJ, Ridout, R, Cole, DE 1999Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort.J Bone Miner Res14633643PubMedGoogle Scholar
  6. 6.
    Soyka, LA, Fairfield, WP, Klibanski, A 2000Hormonal determinants and disorders of peak bone mass in children.J Clin Endocrinol Metab8539513963PubMedGoogle Scholar
  7. 7.
    Welten, DC, Kemper, HCG, Post, GB, Van Mechelen, W, Twisk, J, Lips, P, Teule, GJ 1994Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake.J Bone Miner Res910891096PubMedGoogle Scholar
  8. 8.
    Uitterlinden, AG, Pols, HA, Burger, H, Huang, Q, Van Daele, PL, Van Duijn, CM, Hofman, A, Birkenhager, JC, Van Leeuwen, JP 1996A large-scale population-based study of the association of vitamin D receptor gene polymorphisms with bone mineral density.J Bone Miner Res1112411248PubMedGoogle Scholar
  9. 9.
    Spotila, LD, Caminis, J, Johnston, R, Shimoya, KS, O’Conner, MP, Prockop, DJ, Tenenhouse, A, Tenenhouse, HS 1996Vitamin D receptor genotype is not associated with bone mineral density in three ethnic/regional groups.Calcif Tissue Int59235237CrossRefPubMedGoogle Scholar
  10. 10.
    Morrison, NA, Cheng Qi, J, Tokita, A, Kelly, PJ, Crofts, L, Nguyen, TV, Sambrook, PN, Eisman, JA 1994Prediction of bone density from vitamin D receptor alleles.Nature367284287PubMedGoogle Scholar
  11. 11.
    Hansen, MA, Overgaard, K, Riis, BJ, Christiansen, C 1991Role of bone mass and bone loss in postmenopausal osteoporosis: 12 year study.BMJ303961964PubMedGoogle Scholar
  12. 12.
    Sainz, J, Van Tornhout, JM, Loro, ML, Sayre, J, Roe, TF, Gilsanz, V 1997Vitamin D-receptorgene polymorphisms and bone density in prepubertal American girls of Mexican descent.N Engl J Med3377782PubMedGoogle Scholar
  13. 13.
    Gunnes, M, Berg, JP, Halse, J, Lehman, EH 1997Lack of relationship between vitamin D receptor genotype and forearm bone gain in healthy children, adolescents, and young adults.J Clin Endocrinol Metab82851855PubMedGoogle Scholar
  14. 14.
    Baroncelli, GI, Federico, G, Bertelloni, S, Ceccarelli, C, Cupelli, D, Saggese, G 1999Vitamin-D receptor genotype does not predict bone mineral density, bone turnover, and growth in prepubertal children.Horm Res51150156CrossRefPubMedGoogle Scholar
  15. 15.
    Lorentzon, M, Lorentzon, R, Nordstrom, P 2000Vitamin D receptor gene polymorphism is associated with birth height, growth to adolescence, and adult stature in healthy Caucasian men: a cross-sectional and longitudinal study.J Clin Endocrinol Metab8516661670PubMedGoogle Scholar
  16. 16.
    Suarez, F, Zeghoud, F, Rossignol, C, Walrant, O, Garabédian, M 1997Association between vitamin D receptor gene polymorphism and sex-dependent growth during first two years of life.J Clin Endocrinol Metabol8229662970Google Scholar
  17. 17.
    Slack, JL, Liska, DJ, Bornstein, P 1993Regulation of expression of the type I collagen genes.Am J Med Genet45140151PubMedGoogle Scholar
  18. 18.
    Pavlin, D, Bedalov, A, Kronenberg, MS, Kream, BE, Rowe, DW, Smith, CL, Pike, JW, Lichtler, AC 1994Analysis of regulatory regions in the COL1A1 gene responsible for 1,25-dihydroxyvitamin D3-mediated transcriptional repression in osteoblastic cells.J Cell Biochem56490501PubMedGoogle Scholar
  19. 19.
    Van der Sluis, IM, de Muinck Keizer-Schrama, S, Pols, HAP, Lequin, MH, Krenning, EP, Uitterlinden, AG 2002Collagen IA1 polymorphism is associated with bone characteristics in Caucasian children and young adults.Calcif Tissue Int71393399CrossRefPubMedGoogle Scholar
  20. 20.
    Boot, AM, Bouquet, J, de Ridder, MAJ, Krenning, EP, de Muinck Keizer-Schrama, SMPF 1997Determinants of body composition, measured by dual x-ray absorptiometry, in Dutch children and adolescents.Am J Clin Nutr66232238PubMedGoogle Scholar
  21. 21.
    Fredriks, AM, van Buuren, S, Burgmeijer, RJ, Meulmeester, JF, Beuker, RJ, Brugman, E, Roede, MJ, Verloove-Vanhorick, SP, Wit, JM 2000Continuing positive secular growth change in The Netherlands 1955–1997.Pediatr Res47316323PubMedGoogle Scholar
  22. 22.
    Roede, MJ, van Wieringen, JC 1985Growth diagrams 1980, Netherlands. Third nation-wide survey.Tijdschrift voor Sociale Gezondheidszorg63 suppl134Google Scholar
  23. 23.
    Duke, PM, Litt, IF, Gross, RT 1980Adolescents’ self-assessment of sexual maturation.Pediatrics66918920PubMedGoogle Scholar
  24. 24.
    Tanner, JM, White house, RH 1976Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty.Arch Dis Child51170179PubMedGoogle Scholar
  25. 25.
    Kröger, HPJ, Vainio, P, Nieminen, J, Kotaniemi, A 1995Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology.Bone17157159PubMedGoogle Scholar
  26. 26.
    van der Sluis, IM, de Ridder, MAJ, Boot, AM, Krenning, EP, de Muinck Keizer-Schrama, SMPF 2002Reference data for bone density and body composition measured with dual energy X ray absorptiometry in white children and young adults.Arch Dis Child87341347Google Scholar
  27. 27.
    Tao, C, Yu, T, Garnett, S, Briody, J, Knight, J, Woodhead, H, Cowell, CT 1998Vitamin D receptor alleles predict growth and bone density in girls.Arch Dis Child79488493PubMedGoogle Scholar
  28. 28.
    Kato, Y, Shimazu, A, Iwamoto, M, Nakashima, K, Koike, T, Suzuki, F, Nishii, Y, Sato, K 1990Role of 1,25-dihydroxycholecalciferol in growth-plate cartilage: inhibition of terminal differentiation of chondrocytes in vitro and in vivo.Proc Natl Acad Sci U S A8765226526Google Scholar
  29. 29.
    Gerstenfeld, LC, Shapiro, FD 1996Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development.J Cell Biochem6219CrossRefPubMedGoogle Scholar
  30. 30.
    Klaus, G, Merke, J, Eing, H, Hugel, U, Milde, P, Reichel, H, Ritz, E, Mehls, O 19911,25(OH)2D3 receptor regulation and 1,25(OH)2D3 effects in primary cultures of growth cartilage cells of the rat.Calcif Tissue Int49340348PubMedGoogle Scholar
  31. 31.
    Schwartz, Z, Schlader, DL, Ramirez, V, Kennedy, MB, Boyan, BD 1989Effects of vitamin D metabolites on collagen production and cell proliferation of growth zone and resting zone cartilage cells in vitro.J Bone Miner Res4199207PubMedGoogle Scholar
  32. 32.
    Narchi, H, El Jamil, M, Kulaylat, N 2001Symptomatic rickets in adolescence.Arch Dis Child84501503CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, JT, Lin, CJ, Burridge, SM, Fu, GK, Labuda, M, Portale, AA, Miller, WL 1998Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families.Am J Hum Genet6316941702CrossRefPubMedGoogle Scholar
  34. 34.
    Dardenne, O, Prud’homme, J, Arabian, A, Glorieux, FH, St-Arnaud, R 2001Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets.Endocrinology14231353141Google Scholar
  35. 35.
    Panda, DK, Miao, D, Tremblay, ML, Sirois, J, Farookhi, R, Hendy, GN, Goltzman, D 2001Targeted ablation of the 25-hydroxyvitamin D 1alpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction.Proc Natl Acad Sci USA9874987503CrossRefPubMedGoogle Scholar
  36. 36.
    Li, YC, Pirro, AE, Amling, M, Delling, G, Baron, R, Bronson, R, Demay, MB 1997Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia.Proc Natl Acad Sci USA9498319835CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshizawa, T, Handa, Y, Uematsu, Y,  et al. 1997Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning.Nat Genet16391396PubMedGoogle Scholar
  38. 38.
    Viitanen, AM, Kärkkäinen, M, Laitinen, K, Lamberg-Allardt, C, Kainulainen, K, Räsänen, L, Viikari, J, Välimäki, MJ, Kontula, K 1996Common polymorphism of the vitamin D receptor gene is associated with variation of peak bone mass in young Finns.Calcif Tissue Int59231234CrossRefPubMedGoogle Scholar
  39. 39.
    Ferrari, S, Rizzoli, R, Manen, D, Slosman, D, Bonjour, JP 1998Vitamin D receptor gene starts codon polymorphisms (Fokl) and bone mineral density: interaction with age, dietary calcium, and 3′-end region polymorphisms.J Bone Miner Res13925930PubMedGoogle Scholar
  40. 40.
    Uitterlinden, AG, Weel, AE, Burger, H, Fang, Y, van Duijn, CM, Hofman, A, van Leeuwen, JP, Pols, HA 2001Interaction between the vitamin D receptor gene and collagen type I alpha 1 gene in susceptibility for fracture.J Bone Miner Res16379385PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • I. M. van der Sluis
    • 1
    • 2
    • 3
  • S. M. P. F. de Muinck Keizer-Schrama
    • 1
  • E. P. Krenning
    • 4
  • H. A. P. Pols
    • 3
  • A. G. Uitterlinden
    • 3
  1. 1.Department of Pediatrics, div. EndocrinologySophia Children’s Hospital, 3000 CB RotterdamThe Netherlands
  2. 2.Department of RadiologyDijkzigt University Hospital, RotterdamThe Netherlands
  3. 3.Department of Internal MedicineDijkzigt University Hospital, RotterdamThe Netherlands
  4. 4.Department of Nuclear MedicineDijkzigt University Hospital, RotterdamThe Netherlands

Personalised recommendations