Calcified Tissue International

, Volume 73, Issue 5, pp 502–510

Rodent Osteoblastic Cells Express Voltage-Sensitive Calcium Channels Lacking a γ Subunit

  • J. J. Bergh
  • Y. Shao
  • K. Akanbi
  • M. C. Farach-Carson
Laboratory Investigations

Abstract

Voltage-sensitive calcium channels (VSCC) open in response to external stimuli, including calcitropic hormones, that alter plasma membrane calcium (Ca2+) permeability. Ca2+ that enters the cell through these channels serves a second messenger function, eliciting cellular responses that include secretion and changes in gene expression. In osteoblasts, VSCCs serve as key regulators of Ca2+ permeability and are a major class of calcitropic hormone-sensitive Ca2+ channels present in the plasma membrane. The members of the VSCC family exist as a complex of polypeptide subunits that are comprised of a pore-forming α1 subunit, an intracellular β subunit, a dimer of disulfide-linked α2 and δ subunits, and in some tissues, a γ subunit. Previous studies in our laboratory have shown that the major functional α1 subunit present in osteoblasts is the α1C (CaV1.2). To determine the complement of auxiliary subunits present in rodent osteoblastic cells, we employed RT-PCR using a battery of subunit specific primers and appropriate tissue controls. Immunohistochemistry also was performed, using available subunit specific antibodies, to measure protein expression and localization. Cell types examined included MC3T3-E1 at various stages of differentiation, ROS 17/2.8 osteosarcoma, and primary cultures of rat calvarial osteoblasts. The results indicate that all cells expressed multiple β subunit classes and α2δ dimers, but no γ subunits, regardless of differentiation state. We propose a structure for the functional osteoblast VSCC that consists of α1, β, α2δ subunits and is devoid of a γ subunit.

Keywords

Voltage-sensitive calcium channel Osteoblast Calcium channel structure Cell differentiation 

References

  1. 1.
    Mundy, GR 1999Cellular and molecular regulation of bone turnover.Bone (suppl)2435S38SCrossRefGoogle Scholar
  2. 2.
    de Vernejoul, MC 1996Dynamics of bone remodelling: biochemical and pathophysiological basis.Eur J Clin Chem Clin Biochem34729734PubMedGoogle Scholar
  3. 3.
    Caffrey, JM, Farach-Carson, MC 1989Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells.J Biol Chem2642026520274PubMedGoogle Scholar
  4. 4.
    Chesnoy-Marchais, D, Fritsch, J 1998Voltage-gated sodium and calcium currents in rat osteoblasts.J Physiol398291311Google Scholar
  5. 5.
    Civitelli, R,  et al. 1990Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells.Endocrinology12722532262PubMedGoogle Scholar
  6. 6.
    Duncan, RL, Turner, CH 1995Mechanotransduction and the functional response of bone to mechanical strain.Calcif Tissue Int57344358PubMedGoogle Scholar
  7. 7.
    Lieberherr, M 1987Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteobasts.J Biol Chem2621316813173PubMedGoogle Scholar
  8. 8.
    Miyauchi, A,  et al. 2000Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes.J Biol Chem27533354233CrossRefPubMedGoogle Scholar
  9. 9.
    You, J,  et al. 2001Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts.J Biol Chem2761336513371CrossRefPubMedGoogle Scholar
  10. 10.
    Duriez, J,  et al. 1993Effects of the calcium channel blocker nifedipine on epiphyseal growth plate and bone turnover: a study in rabbit.Calcif Tissue Int52120124PubMedGoogle Scholar
  11. 11.
    Li, W, Farach-Carson, MC 2001Parathyroid hormone-stimulated resorption in calvaria cultured in serum-free medium is enhanced by the calcium-mobilizing activity of 1,25-dihydroxyvitamin D3.Bone29231235CrossRefPubMedGoogle Scholar
  12. 12.
    Catterall, WA 1995Structure and function of voltage-gated ion channels.Annu Rev Biochem64493531PubMedGoogle Scholar
  13. 13.
    Catterall, WA 2000Structure and regulation of voltage-gated Ca2+ channels.Annu Rev Cell Dev Biol16521555PubMedGoogle Scholar
  14. 14.
    Tsien, RW, Tsien, RY 1990Calcium channels, stores, and oscillations.Annu Rev Cell Biol6715760PubMedGoogle Scholar
  15. 15.
    Ahlijanian, MK, Westenbroek, RE, Catterall, WA 1990Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina.Neuron4819832PubMedGoogle Scholar
  16. 16.
    De Jongh, KS, Warner, C, Catterall, WA 1990Subunits of purified calcium channels. α 2 and δ are encoded by the same gene.J Biol Chem2651473814741PubMedGoogle Scholar
  17. 17.
    Klugbauer, N,  et al. 1999Molecular diversity of the calcium channel α2δ subunit.J Neurosci19684691PubMedGoogle Scholar
  18. 18.
    Varadi, G,  et al. 1999Molecular elements of ion permeation and selectivity within calcium channels.Crit Rev Biochem Mol Biol34181214PubMedGoogle Scholar
  19. 19.
    Kadiyala, S,  et al. 2001Metabolites and analogs of 1α,25-dihydroxyvitamin D3: evaluation of actions in bone.Steroids66347355CrossRefPubMedGoogle Scholar
  20. 20.
    Liu, R,  et al. 2000Ribozyme ablation demonstrates that the cardiac subtype of the voltage-sensitive calcium channel is the molecular transducer of 1,25-dihydroxyvitamin D3-, stimulated calcium influx in osteoblastic cells.J Biol Chem27587118718CrossRefPubMedGoogle Scholar
  21. 21.
    Meszaros, JG,  et al. 1996Down-regulation of L-type Ca2+ channel transcript levels by 1,25-dihyroxyvitamin D3. Osteoblastic cells express L-type α1C Ca2+ channel isoforms.J Biol Chem2713298132985CrossRefPubMedGoogle Scholar
  22. 22.
    Chien, AJ,  et al. 1996Identification of palmitoylation sites within the L-type calcium channel β2a subunit and effects on channel function.J Biol Chem2712646526468CrossRefPubMedGoogle Scholar
  23. 23.
    Haase, H,  et al. 1996In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines.Mol Cell Biochem163–16499106Google Scholar
  24. 24.
    McEnery, MW, Copeland, TD, Vance, CL 1998Altered expression and assembly of N-type calcium channel alpha1B and β subunits in epileptic lethargic (lh/lh) mouse.J Biol Chem2732143521438CrossRefPubMedGoogle Scholar
  25. 25.
    Gao, T, Chien, AJ, Hosey, MM 1999Complexes of theα1C and β subunits generate the necessary signal for membrane targeting of class C L-type calcium channels.J Biol Chem27421372144CrossRefPubMedGoogle Scholar
  26. 26.
    Dolphin, AC,  et al. 1999The effect of α2-δ and other accessory subunits on expression and properties of the calcium channel α1G.J Physiol5193545PubMedGoogle Scholar
  27. 27.
    Felix, R,  et al. 1997Dissection of functional domains of the voltage-dependent Ca2+ channel α2δ subunit.J Neurosci1768846891PubMedGoogle Scholar
  28. 28.
    Gurnett, CA, De Waard, M, Campbell, KP 1996Dual function of the voltage-dependent Ca2+ channel α2 δ subunit in current stimulation and subunit interaction.Neuron16431440PubMedGoogle Scholar
  29. 29.
    Jay, SD,  et al. 1991Structural characterization of the dihydropyridine-sensitive calcium channel α 2-subunit and the associated δ peptides.J Biol Chem26632873293PubMedGoogle Scholar
  30. 30.
    Eberst, R,  et al. 1997Identification and functional characterization of a calcium channel γ subunit.Pflugers Arch433633637CrossRefPubMedGoogle Scholar
  31. 31.
    Wei, XY,  et al. 1991Heterologous regulation of the cardiac Ca2+ channel α 1 subunit by skeletal muscle beta and gamma subunits. Implications for the structure of cardiac L-type Ca2+ channels.J Biol Chem2662194321947PubMedGoogle Scholar
  32. 32.
    Barry, EL,  et al. 1998Distinct calcium channel isoforms mediate parathyroid hormone and chlorothiazide-stimulated calcium entry in transporting epithelial cells.J Membr Biol1615564CrossRefPubMedGoogle Scholar
  33. 33.
    Franceschi, RT, Iyer, BS, Cui, Y 1994Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells.J Bone Miner Res9843854PubMedGoogle Scholar
  34. 34.
    Physician’s Desk Reference (2003) ProcardiaGoogle Scholar
  35. 35.
    Singer, D,  et al. 1991The roles of the subunits in the function of the calcium channel.Science25315531557PubMedGoogle Scholar
  36. 36.
    Cahill, AL, Hurley, JH, Fox, AP 2000Coexpression of cloned α1B, β2a, and α2δ subunits produces non-inactivating calcium currents similar to those found in bovine chromaffin cells.J Neurosci2016851693PubMedGoogle Scholar
  37. 37.
    Chien, AJ,  et al. 1995Roles of a membrane-localized β subunit in the formation and targeting of functional L-type Ca2+ channels.J Biol Chem2703003630044PubMedGoogle Scholar
  38. 38.
    Hohaus, A,  et al. 2002The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton.Faseb J1612051216CrossRefPubMedGoogle Scholar
  39. 39.
    Green, PJ,  et al. 2001Kinetic modification of the alpha1I subunit-mediated T-type Ca2+ channel by a human neuronal Ca2+ channel δ subunit.J Physiol533467478PubMedGoogle Scholar
  40. 40.
    Letts, VA,  et al. 1998The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit.Nat Genet19340347PubMedGoogle Scholar
  41. 41.
    Noebels, JL,  et al. 1990Stargazer: a new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures.Epilepsy Res7129135CrossRefPubMedGoogle Scholar
  42. 42.
    Freise, D,  et al. 2000Absence of the δ subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties.J Biol Chem2751447614481CrossRefPubMedGoogle Scholar
  43. 43.
    Sharp, AH,  et al. 2001Biochemical and anatomical evidence for specialized voltage-dependent calcium channel δ isoform expression in the epileptic and ataxic mouse, stargazer.Neuroscience105599617CrossRefPubMedGoogle Scholar
  44. 44.
    Meszaros, JG, Karin, NJ, Farach-Carson, MC 1996Voltage-sensitive calcium channels in osteoblasts. mediators of plasma membrane signalling events.Connect Tissue Res35107111PubMedGoogle Scholar
  45. 45.
    Raisz, LG 1999Physiology and pathophysiology of bone remodeling.Clin Chem4513531358PubMedGoogle Scholar
  46. 46.
    Rodan, GA,  et al. 1988Diversity of the osteoblastic phenotype.Ciba Found Symp1367891PubMedGoogle Scholar
  47. 47.
    Quarles, LD,  et al. 1992Distinct proliferate and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model osteoblast development.J Bone Miner Res7683692PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • J. J. Bergh
    • 1
  • Y. Shao
    • 1
  • K. Akanbi
    • 1
  • M. C. Farach-Carson
    • 1
  1. 1.Department of Biological SciencesUniversity of Delaware, Newark, Delaware 19716USA

Personalised recommendations