Calcified Tissue International

, Volume 74, Issue 1, pp 35–41

Association Between a Polymorphism Affecting an AP1 Binding Site in the Promoter of the TCIRG1 Gene and Bone Mass in Women

  • C. Sobacchi
  • P. Vezzoni
  • D. M. Reid
  • F. E. A. McGuigan
  • A. Frattini
  • M. Mirolo
  • O. M. E. Albhaga
  • A. Musio
  • A. Villa
  • S. H. Ralston
Article

Abstract

The TCIRG1 gene encodes a component of the osteoclast vacuolar proton pump and previous work has shown that inactivating mutations of the TCIRG1 cause autosomal recessive osteopetrosis. In order to determine whether allelic variation in TCIRG1 contributes to the regulation of bone mineral density (BMD) in normal individuals, we studied the relationship between polymorphisms of TCIRG1 and BMD in a population-based cohort of 739 perimenopausal women. Five common polymorphisms were identified: two in the promoter, a conservative change within exon 4, one within intron 4 and one within intron 11. One of the promoter polymorphisms (G-1102A) lay within a consensus recognition site for the AP1 transcription factor. There was a significant association between the G-1102A genotype and BMD at the lumbar spine (P = 0.01) and femoral neck (P = 0.03). The association remained significant after correcting for age, weight, height, menopausal status/HRT use and smoking (P = 0.008 for spine BMD and P = 0.03 for hip BMD), and homozygotes for the −1100 “G” allele had BMD values significantly higher than individuals who carried the −1100 “A” allele at both spine (P = 0.007) and hip (P = 0.047). Subgroup analysis showed that the association between G-1102A and BMD was restricted to premenopausal women who comprised 50.6% of the study group. None of the other polymorphisms or haplotypes were significantly associated with BMD in the study group as a whole or in any subgroup. Functional studies will need to be performed to determine the mechanisms that underlie this association, but we conclude that, in this relatively large population, allelic variation at the G-1102A site of TCIRG1 accounts for part of the heritable component of BMD in Scottish women, possibly by affecting peak bone mass.

Keywords

TCIRG1 gene BMD Polymorphisms Premenopause 

References

  1. 1.
    Kanis, JA, Melton III, LJ, Christiansen, C, Johnston, CC, Khaltaev, N 1994The diagnosis of osteoporosis.J Bone Miner Res911371141PubMedGoogle Scholar
  2. 2.
    Gueguen, R, Jouanny, P, Guillemin, F, Kuntz, C, Pourel, J, Siest, G 1995Segregation analysis and variance components analysis of bone mineral density in healthy families.J Bone Miner Res1220172022Google Scholar
  3. 3.
    Arden, NK, Spector, TD 1997Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study.J Bone Miner Res1220762081Google Scholar
  4. 4.
    Smith, DM, Nance, WE, Kang, KW, Christian, JC, Johnston, CC 1973Genetic factors in determining bone mass.J Clin Invest5228002808PubMedGoogle Scholar
  5. 5.
    Morrison, NA, Qi, JC, Tokita, A, Kelly, P, Crofts, L, Nguyen, TV, Sambrook, PN, Eisman, JA 1997Prediction of bone density from vitamin D receptor alleles (Erratum).Nature387106Google Scholar
  6. 6.
    Kobayashi, S, Inoue, S, Hosoi, T, Ouchi, Y, Shiraki, M, Orimo, H 1996Association of bone mineral density with polymorphism of the estrogen receptor gene.J Bone Miner Res11306311PubMedGoogle Scholar
  7. 7.
    Grant, SFA, Reid, DM, Blake, G, Herd, R, Fogelman, I, Ralston, SH 1996Reduced bone density and osteoporosis associated with a polymorphic Sp1 site in the collagen type I alpha 1 gene.Nat Genet14203205PubMedGoogle Scholar
  8. 8.
    Rubin, LA, Hawker, GA, Peltekova, VD, Fielding, LJ, Ridout, R, Cole, DE 1999Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort.J Bone Miner Res14633643PubMedGoogle Scholar
  9. 9.
    Gong, Y, Vikkula, M, Boon, L,  et al. 1998Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13.Am J Hum Genet1996146151Google Scholar
  10. 10.
    Heaney, C, Shalev, H, Elbedour, K, Carmi, R, Staack, JB, Sheffield, VC, Beier, DR 1998Human autosomal recessive osteopetrosis maps to 11q13, a position predicted by comparative mapping of the murine osteosclerosis (oc) mutation.Hum Mol Genet714071410CrossRefPubMedGoogle Scholar
  11. 11.
    Johnson, ML, Gong, G, Kimberling, W, Recker, S, Kimmel, DB, Recker, RR 1997Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13).Am J Hum Genet6013261332PubMedGoogle Scholar
  12. 12.
    Gong, Y, Slee, RB, Fukai, N,  et al. 2001LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.Cell107513523PubMedGoogle Scholar
  13. 13.
    Little, RD, Carulli, JP,  et al. 2002A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait.Am J Hum Genet701119CrossRefPubMedGoogle Scholar
  14. 14.
    Boyden, LM, Mao, J, Belsky, J,  et al. 2002High bone density due to a mutation in LDL-receptor-related protein 5.N Engl J Med34615131521CrossRefPubMedGoogle Scholar
  15. 15.
    Frattini, A, Orchard, PJ, Sobacchi, C,  et al. 2000Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis.Nat Genet25343346PubMedGoogle Scholar
  16. 16.
    Sobacchi, C, Frattini, A, Orchard, P,  et al. 2001The mutational spectrum of human malignant autosomal recessive osteopetrosis.Hum Mol Genet1017671773PubMedGoogle Scholar
  17. 17.
    Cam, G, Koller, DL, Peacock, M,  et al. 2002Sibling pair linkage and association studies between peak bone mineral density and the gene locus for the osteoclast-specific subunit (OC116) of the vacuolar proton pump on chromosome 11p12-13.J Clin Endocrinol Metab8738193824PubMedGoogle Scholar
  18. 18.
    Garton, MJ, Torgerson, DJ, Donaldson, C, Russell, IT, Reid, DM 1992Recruitment methods for screening programmes: trial of anew method within a regional osteoporosis study [see comments].Br Med J3058284Google Scholar
  19. 19.
    Niu, T, Qin, ZS, Xu, X, Liu, JS 2002Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms.Am J Hum Genet70157169CrossRefPubMedGoogle Scholar
  20. 20.
    Terwilliger, JD, Ott, J 1994Handbook of human genetic linkage.Johns Hopkins University PressBaltimore & LondonGoogle Scholar
  21. 21.
    Vaananen, HK, Zhao, H, Mulari, M, Halleen, JM 2000The cell biology of osteoclast function.J Cell Sci113377381PubMedGoogle Scholar
  22. 22.
    Li, YP, Chen, W, Liang, Y, Li, E, Stashenko, P 1999Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification.Nat Genet23447451CrossRefPubMedGoogle Scholar
  23. 23.
    Scimeca, JC, Franchi, A, Trojani, C,  et al. 2000The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants.Bone26207213CrossRefPubMedGoogle Scholar
  24. 24.
    Jochum, W, David, JP, Elliott, C, Wutz, A, Plenk, H, Matsuo, K, Wagner, EF 2000Increased bone formation and osleosclerosis in mice overexpressing the transcription factor Fra-1.Nat Med6980984CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • C. Sobacchi
    • 1
  • P. Vezzoni
    • 1
  • D. M. Reid
    • 2
  • F. E. A. McGuigan
    • 2
  • A. Frattini
    • 1
  • M. Mirolo
    • 1
  • O. M. E. Albhaga
    • 2
  • A. Musio
    • 1
  • A. Villa
    • 1
  • S. H. Ralston
    • 2
  1. 1.Instituto di Tecnologie BiomedicheCNR, Via Fratelli Cervi, 93, 20090 Segrate, MilanoItaly
  2. 2.Department of Medicine and TherapeuticsUniversity of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD ScotlandUK

Personalised recommendations