Inventiones mathematicae

, Volume 128, Issue 3, pp 417–436 | Cite as

The determinant of a hypergeometric period matrix

  • Antoine Douai
  • Hiroaki Terao
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Aomoto, K.: Les équations aux différences finies et les intǵrales de functions multiformes, J. Fac. Sci. Tokyo 22 (1975), 271–297 et 26, 519–523 (1979)MATHMathSciNetGoogle Scholar
  2. [AK]
    Aomoto, K., Kita, M.: Hypergeometric functions (in Japanese). Tokyo: Springer 1994Google Scholar
  3. [BV]
    Brylawski, T., Varchenko, A.: The determinant formula for a matroid bilinear form (preprint)Google Scholar
  4. [FT]
    Falk, M. J., Terao, H.: β nbc-bases for cohomology of local systems on hyperplanes complements, Trans. Amer. Math. Soc. (to appear)Google Scholar
  5. [Ki]
    Kita, M.: On hypergeometric functions in several variables II. The wronskian of the hyper-geometric functions of type (n+1, m+1), J. Math. Soc. Japan 45, 645–689 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. [Ko]
    Kohno, T.: Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. 62, Ser. A, 144–147 (1986)MATHMathSciNetCrossRefGoogle Scholar
  7. [L]
    Loeser, F.: Arrangements d’hyperplans et somme de Gauss, Ann. Sci. École Norm. Sup. 24, 379–400 (1991)MATHMathSciNetGoogle Scholar
  8. [LS]
    Loeser, F. and Sabbah, C: Equations aux différences finies et déterminants d’intégrales de fonctions multiformes, Comment. Math. Helv. 66, 458–503 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. [OT]
    Orlik, P., Terao, H.: Arrangements of hyperplanes. Grundlehren der Math. Wiss. 300, Berlin Heildelberg New York: Springer, 1992MATHGoogle Scholar
  10. [S]
    Sabbah, C.: Proximité évanescente I, Compositio Math. 62, 283–328 (1987)MATHMathSciNetGoogle Scholar
  11. [SV]
    Schechtman, V., Varchenko, A.: Arrangements of hyperplanes and Lie algebra homology, Invent, math. 106, 139–194 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. [STV]
    Schechtman, V., Terao, H., Varchenko, A.: Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100, 93–102 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. [V1,V2]
    Varchenko, A.: The Euler Beta-function, the Vandermonde determinant, Legendre’s equation, and critical values of linear functions on a configuration of hyperplanes, Math. USSR Izvestija 35 (1990), 543–572 and 36, 155–168 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. [V3]
    Varchenko, A.: Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics — 21, World Scientific Publishers, 1995Google Scholar
  15. [Z]
    Ziegler, G.: Matroid shellability, β-systems, and affine arrangements, J. Alg. Combinatorics, 1, 283–300 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Antoine Douai
    • 1
  • Hiroaki Terao
    • 2
  1. 1.Département de Mathématiques, Unité associée au CNRS 168Université de Nice, Pare ValroseNice Cedex 2France
  2. 2.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations