Inventiones mathematicae

, Volume 127, Issue 3, pp 417–479 | Cite as

P-adic Banach spaces and families of modular forms

  • Robert F. Coleman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Adolphson, A.: The U p operator of Atkin on modular forms of level three, Illinois Journal of Math. 24, 49–60 (1980)MATHMathSciNetGoogle Scholar
  2. [B]
    Bergman, G.: A weak nullstellensatz for valuations, Proc. of the AMS 28, No. 1, 32–38 (71)Google Scholar
  3. [BGR]
    Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedian Analysis, Springer-Verlag, (1984)Google Scholar
  4. [C-PSI]
    Coleman, R.: A p-adic Shimura isomorphism and p-adic periods of modular forms, Contemporary Mathematics 165, 21–51 (1994)Google Scholar
  5. [C-CO]
    Coleman, R.: Classical and overconvergent modular forms, Invent, math. 124, 215–241 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. [C-HCO]
    Coleman, R.: Classical and overconvergent modular forms of higher level (to appear)Google Scholar
  7. [C-CPS]
    Coleman, R.: On the characteristic power series of the U-operator (to appear)Google Scholar
  8. [CE]
    Coleman, R., Edixhoven, B.: The semi-simplicity of the U p-operator on elliptic modular forms (to appear)Google Scholar
  9. [Dl]
    Dwork, B.: On Hecke polynomials, Invent. Math. 12, 249–256 (1971)MATHCrossRefMathSciNetGoogle Scholar
  10. [D2]
    Dwork, B.: The U p operator of Atkin on modular forms of level 2 with growth conditions, SLN 350, 57–67 (1972)MathSciNetGoogle Scholar
  11. [F-vP]
    Fresnel, J., van der Put, M.: Géométrie Analytique Rigide et Applications, Birkhäuser, Boston (1981)MATHGoogle Scholar
  12. [G-ApM]
    Gouvêa, F.: Arithmetic of p-adic modular forms, SLN 1304, (1988)Google Scholar
  13. [G]
    Gouvêa, F.: Continuity Properties of Modular FormsGoogle Scholar
  14. [GM-F]
    Gouvêa, F., Mazur, B.: Families of Modular Eigenforms, Mathematics of Computation, 58, 793–805 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. [GM-CS]
    Gouvêa, F.: On the characteristic power series of the U-operator, Annales de l’institut Fourier 43 2, 301–312 (1993)MATHMathSciNetGoogle Scholar
  16. [Ha]
    Hatada: Eigenvalues of Hecke Operators on SL(2,Z) Math. Ann. 239, 75–96 (1979)MATHCrossRefMathSciNetGoogle Scholar
  17. [H-IM]
    Hida, H.: Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup., 19, 231–273 (1986)MATHMathSciNetGoogle Scholar
  18. [H-GR]
    Hida, H.: Galois representations into GL 2(Z p[[X]]) attached to ordinary cusp forms, Invent. Math. 85, 545–613 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. [H-LE]
    Hida, H.: Elementary theory of L-functions and Eisenstein series, London Mathematical Society (1993)Google Scholar
  20. [H-NO]
    Hida, H.: Nearly Ordinary Hecke Algebras and Galois Representations of Several Variables, JAMI Innaugural Conference Proceedings, (supplement to) Amer. 3 J. Math. 115–134 (1990)Google Scholar
  21. [Hj]
    Hijikata: Explicit formula of the traces of Hecke operators for Γ 0(N), J. Math. Soc. of Japan, 26, 56–82 (1974)MATHMathSciNetCrossRefGoogle Scholar
  22. [I]
    Ihara, Y.: Hecke polynomials as congruence φ functions in the elliptic modular case, Ann. of Math. 267–295 (1967)Google Scholar
  23. [K-pMF]
    Katz, N.: P-adic properties of modular schemes and modular forms, Modular Functions of one Variable III, SLN 350, 69–190 (1972)Google Scholar
  24. [K-pIE]
    Katz, N.: P-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104, 459–571 (1976)CrossRefMathSciNetGoogle Scholar
  25. [KM]
    Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Math. Stud. 108, PUP (1985)Google Scholar
  26. [Ko1]
    Koike, M: J. Fac. Sci. Univ. Tokyo 20 (1973), On p-adic properties of the Eichier-Selberg trace formula, Nagoya Math. J. 56, (1975)Google Scholar
  27. [Ko2]
    Koike, M.: On p-adic properties of the Eichier-Selberg trace formula II Nagoya Math. J. 64, 87–96 (1976)MATHMathSciNetGoogle Scholar
  28. [L-A]
    Lang, S.: Algebra, Addison-Wesley (1993)Google Scholar
  29. [L-CF]
    Lang, S.: Cyclotomic Fields, Springer-Verlag (1978)Google Scholar
  30. [Li]
    Li, W.: Newforms and functional equations, Math. Ann. 212, 285–315 (1975)MATHCrossRefMathSciNetGoogle Scholar
  31. [MW]
    Mazur, B., Wiles, A.: Analogies between Function fields and number fields, Amer. J. Math. 105, 507–521 (1983)MATHCrossRefMathSciNetGoogle Scholar
  32. [M]
    Morita, Y.: Hecke polynomials of modular groups and congruence zeta functions of fiber varieties, J. Math. Soc. Japan 21, 6127–6637 (1969)CrossRefGoogle Scholar
  33. [Mi]
    Miyake, T.: Modular Forms, Springer (1989)Google Scholar
  34. [S]
    Serre, J-P.: Endomorphismes complètements continues des espaces de Banach p-adiques, Publ. Math. I.H.E.S., 12, 69–85 (1962)MATHMathSciNetGoogle Scholar
  35. [S-MZp]
    Serre, J.-P.: Formes modulaires et fonetiones zêta p-adiques, Modular Functions of one Variable III, SLN 350, 69–190 (1972)Google Scholar
  36. [Sh]
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions 11, Publ. Math. Soc. Japan, Princ. Univ. Press (1971)Google Scholar
  37. [SwD]
    Swinnerton-Dyer, H.P.F.: On l-adic representations and congruences of modular forms, Modular Functions of one Variable III, SLN 350, 1–55 (1972)MathSciNetGoogle Scholar
  38. [T]
    Tate, J.: Rigid analytic spaces, Invent. Math. 12, 257–289 (1971)MATHCrossRefMathSciNetGoogle Scholar
  39. [W]
    Washington, L.: Introduction to Cyclotomic Fields, Springer-Verlag (1980)Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Robert F. Coleman
    • 1
  1. 1.Department of MathematicsUC BerkeleyBerkeleyUSA

Personalised recommendations