A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey–Stewartson equation and to the inverse boundary value problem of Calderón

  • Adrian NachmanEmail author
  • Idan Regev
  • Daniel Tataru


We prove a Plancherel theorem for a nonlinear Fourier transform in two dimensions arising in the Inverse Scattering method for the defocusing Davey–Stewartson II equation. We then use it to prove global well-posedness and scattering in \(L^2\) for defocusing DSII. This Plancherel theorem also implies global uniqueness in the inverse boundary value problem of Calderón in dimension 2, for conductivities \(\sigma >0\) with \(\log \sigma \in \dot{H}^1\). The proof of the nonlinear Plancherel theorem includes new estimates on classical fractional integrals, as well as a new result on \(L^2\)-boundedness of pseudo-differential operators with non-smooth symbols, valid in all dimensions.



The authors would like to thank Alexandru Tamasan for many helpful discussions at the early stages of investigation. A. Nachman and D. Tataru are grateful to IHP for hospitality and support during the program on Inverse Problems in 2015, which allowed us to initiate this project. The authors are also grateful to Xian Liao, Peter Perry, Mihai Tohaneanu, Pavel Zorin-Kranich and the anonymous referees for carefully reading the manuscript and helping us correct a number of typos and inaccuracies. D. Tataru was partially supported by the NSF grant DMS-1266182 as well as by the Simons Investigator grant from the Simons Foundation. A. Nachman was partially supported by the NSERC Discovery Grant RGPIN-06329.


  1. 1.
    Ablowitz, M., Fokas, A.S.: Comments on the inverse scattering transform and related nonlinear evolution equations. In: School and Workshop: Nonlinear Phenomena Oaxtepec, Mexico, November 29–December 17, 1982, pp. 3–24 (1982)Google Scholar
  2. 2.
    Ablowitz, M., Fokas, A.S.: Method of solution for a class of multidimensional nonlinear evolution equations. Phys. Rev. Lett. 51(1), 7–10 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ablowitz, M., Fokas, A.S.: On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane. J. Math. Phys. 25(8), 2494–2505 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ablowitz, M.J., Haberman, R.: Nonlinear evolution equations in two and three dimensions. Phys. Rev. Lett. 35, 1185–1188 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Astala, K., Faraco, D., Rogers, K.: On Plancherel’s identity for a 2D scattering transform. Nonlinearity 28, 2721–2729 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Astala, K., Lassas, M., Päivärinta, L.: The borderlines of the invisibility and visibility for Calderón’s inverse problem. Anal. PDE 9, 43–98 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 615–667 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Beals, R., Coifman, R.R.: Multidimensional inverse scattering and nonlinear partial differential equations. Pseudodifferential operators and applications, F. Treves. ed., Proceedings of symposia in pure mathematics, Amer. Math. Soc. 43, 45–70 (1985)Google Scholar
  10. 10.
    Beals, R., Coifman, R.R.: The spectral problem for the Davey-Stewartson and Ishimori hierarchies. In: Degasperis, A., Fordy, A.P., Lakshmanan, M. (eds.) Nonlinear Evolution Equations: Integrability and Spectral Methods. Manchester University Press, Manchester (1988)Google Scholar
  11. 11.
    Beals, R., Coifman, R.R.: Linear spectral problems, nonlinear equations and the \({\overline{\partial }}\)-method. Inverse Probl. 5(2), 87–130 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Brown, R.: Estimates for the scattering map associated with a two-dimensional first-order system. J. Nonlinear Sci. 11, 459–471 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Commun. Partial Differ. Equ. 22(5–6), 1009–1027 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Brown, R.M., Ott, K.A., Perry, P.A.: Action of a scattering map on weighted Sobolev spaces in the plane. J. Funct. Anal. 271(1), 85–106 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Caro, P., Rogers, K.M.: Global uniqueness for the Calderón problem with Lipschitz conductivities. Forum Math. Pi E2, 4 (2016)zbMATHGoogle Scholar
  16. 16.
    Cârstea, C., Wang, J.N.: Uniqueness for the two dimensional Calderón’s problem with unbounded conductivities. Preprint (2016)Google Scholar
  17. 17.
    Coifman, R., Meyer, Y.: Au-delá des opérateurs pseudo-différentiels, Asterisque, vol. 57. Société mathématique de France, Paris (1978)zbMATHGoogle Scholar
  18. 18.
    Craig, W., Schanz, U., Sulem, C.: The modulational regime of three-dimensional water waves and the Davey–Stewartson system. Ann. Inst. Henri Poincare 14(5), 131–175 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Davey, A., Stewartson, K.: On three dimensional packets of surface waves. Proc. R. Lond. Soc. A 338, 101–110 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dodson, B.: Global well-posedness and scattering for the defocusing, \(L^2\)-critical, nonlinear Schrödinger equation when d = 2. Duke Math. J. 165(28), 3435–3516 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Gérard, P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ghidaglia, J.M., Saut, J.C.: On the initial value problem for the Davey–Stewartson systems. Nonlinearity 3(2), 475–506 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)zbMATHGoogle Scholar
  24. 24.
    Haberman, B.: Uniqueness in Calderón’s problem for conductivities with unbounded gradient. Commun. Math. Phys. 340(2), 639–659 (2015)zbMATHCrossRefGoogle Scholar
  25. 25.
    Haberman, B., Tataru, D.: Uniqueness in Calderón’s problem with Lipschitz conductivities. Duke Math. J. 162(3), 497–516 (2013)zbMATHCrossRefGoogle Scholar
  26. 26.
    Hayashi, N., Saut, J.C.: Global existence of small solutions to the Davey–Stewartson and the Ishimori systems. Differ. Integral Equ. 8(7), 1657–1675 (1995)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy- critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Killip, R., Tao, T., Visan, M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. (JEMS) 11(6), 1203–1258 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kiselev, O.M.: Asymptotic behavior of the solution of a system of Davey–Stewartson II equations in the soliton-free case. Differ. Equ. 33(6), 815–823 (1997)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kiselev, O.M.: Asymptotics of solutions of multidimensional integrable equations and their perturbations. J. Math. Sci. (N. Y.) 138(6), 6067–6230 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Knudsen, K., Tamasan, A.: Reconstruction of less regular conductivities in the plane. Commun. Partial Differ. Equ. 29(3 and 4), 361–381 (2004)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Lamarié-Rieusset, P.G., Gala, S.: Multipliers between Sobolev spaces and fractional differentiation. J. Math. Anal. Appl. 322, 1030–1054 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Linares, F., Ponce, G.: On the Davey–Stewartson systems. Ann. l’I.H.P. Anal. Non linéaire 10, 523–548 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Maz’ya, V.G., Shaposhnikova, T.O.: The Theory of Multipliers on Spaces of Differentiable Functions. Pitnam, New York (1985)zbMATHGoogle Scholar
  35. 35.
    Merle, F., Vega, L.: Compactness at blow-up time for \(L^2\) solutions of the critical nonlinear Schrödinger equation in 2D. Int. Math. Res. Not. 8, 399–425 (1998)zbMATHCrossRefGoogle Scholar
  36. 36.
    Nachman, A.I.: Reconstruction from boundary measurements. Ann. Math. 2nd Ser. 128(3), 531–576 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. University of Rochester, Dept. of Mathematics Preprint Series, No. 19 (1993)Google Scholar
  38. 38.
    Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 2nd Ser. 143, 71–96 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Nie, Z., Brown, R.: Estimates for a family of multi-linear forms. J. Math. Anal. Appl. 377, 79–87 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Perry, P.A.: Global well-posedness and long-time asymptotics for the defocusing Davey–Stewartson II equation in \(H^{1,1}({\mathbb{R}}^2)\). J. Spectral Theory 6(3), 429–481 (2014)CrossRefGoogle Scholar
  41. 41.
    Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire 12(3), 319–337 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)Google Scholar
  43. 43.
    Sung, L.Y.: An inverse scattering transform for the Davey–Stewartson II equations, I. J. Math. Ann. Appl. 183, 121–154 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Sung, L.Y.: An inverse scattering transform for the Davey–Stewartson II equations, II. J. Math. Ann. Appl. 183, 289–325 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Sung, L.Y.: An inverse scattering transform for the Davey–Stewartson II equations, III. J. Math. Ann. Appl. 183, 477–494 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 2nd Ser. 125(1), 153–169 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Tamasan, A.: On the scattering method for the \({\bar{\partial }}\)-equation and reconstruction of convection coefficients. Inverse Probl. 20, 1807–1817 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations