Advertisement

Inventiones mathematicae

, Volume 218, Issue 3, pp 853–888 | Cite as

Large deviation principle in one-dimensional dynamics

  • Yong Moo ChungEmail author
  • Juan Rivera-Letelier
  • Hiroki Takahasi
Article
  • 341 Downloads

Abstract

We study the dynamics of smooth interval maps with non-flat critical points. For every such a map that is topologically exact, we establish the full (level-2) Large Deviation Principle for empirical means. In particular, the Large Deviation Principle holds for every non-renormalizable quadratic map. This includes the maps without physical measure found by Hofbauer and Keller, and challenges the widely-shared view of the Large Deviation Principle as a refinement of laws of large numbers.

Mathematics Subject Classification

37A50 37C40 37D25 37D45 37E05 

Notes

Acknowledgements

We would like to thank Michał Misiurewicz for his help with references, Bing Gao, Gerhard Keller and Masato Tsujii for fruitful discussions, and the anonymous referees for their healthy criticism that helped us improve the exposition in the introduction. The first-named author is partially supported by the Grant-in-Aid for Scientific Research (C) of the JSPS 16K05179. The second-named author is partially supported by FONDECYT Grant 1141091 and NSF Grant DMS-1700291. The last-named author is partially supported by the Grant-in-Aid for Young Scientists (A) of the JSPS 15H05435 and the Grant-in-Aid for Scientific Research (B) of the JSPS 16KT0021.

References

  1. 1.
    Avila, A., Lyubich, M., de Melo, W.: Regular or stochastic dynamics in real analytic families of unimodal maps. Invent. Math. 154(3), 451–550 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Benedicks, M., Carleson, L.: On iterations of \(1-ax^{2}\) on \((-1,1)\). Ann. Math. 122(1), 1–25 (1985)Google Scholar
  3. 3.
    Blokh, A., Oversteegen, L.: Backward stability for polynomial maps with locally connected Julia sets. Trans. Am. Math. Soc. 356(1), 119–133 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bowen, R.: Equilibrium States and The Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)Google Scholar
  5. 5.
    Bruin, H., Keller, G.: Equilibrium states for \(S\)-unimodal maps. Ergod. Theory Dyn. Syst. 18(4), 765–789 (1998)Google Scholar
  6. 6.
    Cai, H., Li, S.: Distortion of interval maps and applications. Nonlinearity 22(10), 2353–2363 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chung, Y.M.: Large deviations on Markov towers. Nonlinearity 24(4), 1229–1252 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chung, Y.M., Takahasi, H.: Large deviation principle for Benedicks-Carleson quadratic maps. Commun. Math. Phys. 315(3), 803–826 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chung, Y.M., Takahasi, H.: Multifractal formalism for Benedicks-Carleson quadratic maps. Ergod. Theory Dyn. Syst. 34(4), 1116–1141 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chung, Y.M., Takahasi, H.: Large deviation principle for \(S\)-unimodal maps with flat critical point. arXiv:1708.03695v2 (2017)
  11. 11.
    Collet, P., Eckmann, J.-P.: Positive Liapunov exponents and absolute continuity for maps of the interval. Ergod. Theory Dyn. Syst. 3(1), 13–46 (1983)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Comman, H., Rivera-Letelier, J.: Large deviation principles for non-uniformly hyperbolic rational maps. Ergod. Theory Dyn. Syst. 31(2), 321–349 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    de Melo, W., van Strien, S.: One-Dimensional Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 25. Springer, Berlin (1993)Google Scholar
  14. 14.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. 2nd edn. Applications of Mathematics (New York), vol. 38, Springer, New York (1998) Google Scholar
  15. 15.
    Denker, M.: Probability Theory for Rational Maps. In: Probability theory and mathematical statistics (St. Petersburg, 1993), pp. 29–40. Gordon and Breach, Amsterdam (1996)Google Scholar
  16. 16.
    Dobbs, N.: On cusps and flat tops. Ann. Inst. Fourier (Grenoble) 64(2), 571–605 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. II. Commun. Pure Appl. Math. 28, 1–47 (1975); ibid. 28, 279–301 (1975)Google Scholar
  18. 18.
    Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics, Grundlehren der Mathematischen Wissenschaften, vol. 271. Springer, New York (1985)Google Scholar
  19. 19.
    Graczyk, J., Światek, G.: Generic hyperbolicity in the logistic family. Ann. Math. 146(1), 1–52 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Grigull, J.: Große Abweichungen und Fluktuationen für Gleichgewichtsmaße rationaler Abbildungen. Ph.D. thesis (1993)Google Scholar
  21. 21.
    Hofbauer, F., Keller, G.: Quadratic maps without asymptotic measure. Commun. Math. Phys. 127(2), 319–337 (1990)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hofbauer, F., Keller, G.: Quadratic Maps with Maximal Oscillation. In: Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), pp. 89–94. Plenum, New York (1995)Google Scholar
  23. 23.
    Jakobson, M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81(1), 39–88 (1981)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995)Google Scholar
  25. 25.
    Keller, G.: Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42. Cambridge University Press, Cambridge (1998)Google Scholar
  26. 26.
    Keller, G., Nowicki, T.: Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Commun. Math. Phys. 149(1), 31–69 (1992)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Keller, G., Nowicki, T.: Fibonacci maps re(al)visited. Ergod. Theory Dyn. Syst. 15(1), 99–120 (1995)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Levin, G.: On backward stability of holomorphic dynamical systems. Fund. Math. 158(2), 97–107 (1998)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Li, H.: Large deviation principles of one-dimensional maps for Hölder continuous potentials. Ergod. Theory Dyn. Syst. 36(1), 127–141 (2016)zbMATHGoogle Scholar
  31. 31.
    Lyubich, M.: Almost every real quadratic map is either regular or stochastic. Ann. Math. 156(1), 1–78 (2002)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Lyubich, M., Milnor, J.: The Fibonacci unimodal map. J. Am. Math. Soc. 6(2), 425–457 (1993)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Melbourne, I., Nicol, M.: Large deviations for nonuniformly hyperbolic systems. Trans. Am. Math. Soc. 360(12), 6661–6676 (2008)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Studia Math. 67(1), 45–63 (1980)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Orey, S., Pelikan, S.: Deviations of trajectory averages and the defect in Pesin’s formula for Anosov diffeomorphisms. Trans. Am. Math. Soc. 315(2), 741–753 (1989)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Pollicott, M., Sharp, R., Yuri, M.: Large deviations for maps with indifferent fixed points. Nonlinearity 11(4), 1173–1184 (1998)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Przytycki, F., Rivera-Letelier, J.: Nice inducing schemes and the thermodynamics of rational maps. Commun. Math. Phys. 301(3), 661–707 (2011)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Przytycki, F., Rivera-Letelier, J.: Geometric pressure for multimodal maps of the interval. Mem. Am. Math. Soc. 259(1246), v+81 (2019)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Przytycki, F., Rivera-Letelier, J., Smirnov, S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1), 29–63 (2003)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods. London Mathematical Society Lecture Note Series, vol. 371. Cambridge University Press, Cambridge (2010)Google Scholar
  41. 41.
    Rey-Bellet, L., Young, L.-S.: Large deviations in non-uniformly hyperbolic dynamical systems. Ergod. Theory Dyn. Syst. 28(2), 587–612 (2008)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Rivera-Letelier, J.: Asymptotic expansion of smooth interval maps. arXiv:1204.3071v2 (2012)
  43. 43.
    Ruelle, D.: A measure associated with axiom-A attractors. Am. J. Math. 98(3), 619–654 (1976)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9(1), 83–87 (1978)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Ruette, S.: Chaos on the Interval. University Lecture Series, vol. 67. American Mathematical Society, Providence, RI (2017)Google Scholar
  46. 46.
    Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc. 190, 285–299 (1974)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Sinaĭ, J.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk 27(4(166)), 21–64 (1972)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Takahashi, Y.: Entropy Functional (free energy) for Dynamical Systems and their Random Perturbations. In: Stochastic analysis (Katata/Kyoto, 1982), North-Holland Math. Library, vol. 32, pp. 437–467. North-Holland, Amsterdam (1984)Google Scholar
  49. 49.
    Takahashi, Y.: Asymptotic Behaviours of Measures of Small Tubes: Entropy, Liapunov’s Exponent and Large Deviation. In: Dynamical systems and applications (Kyoto, 1987), World Sci. Adv. Ser. Dynam. Systems, vol. 5, pp. 1–21. World Sci. Publishing, Singapore (1987)Google Scholar
  50. 50.
    Young, L.-S.: Large deviations in dynamical systems. Trans. Am. Math. Soc. 318(2), 525–543 (1990)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yong Moo Chung
    • 1
    Email author
  • Juan Rivera-Letelier
    • 2
  • Hiroki Takahasi
    • 3
  1. 1.Department of Applied MathematicsHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of MathematicsUniversity of RochesterRochesterUSA
  3. 3.Department of Mathematics, Keio Institute of Pure and Applied Sciences (KiPAS)Keio UniversityYokohamaJapan

Personalised recommendations