Nonpositive curvature is not coarsely universal

  • Alexandros Eskenazis
  • Manor Mendel
  • Assaf NaorEmail author


We prove that not every metric space embeds coarsely into an Alexandrov space of nonpositive curvature. This answers a question of Gromov (Geometric group theory, Cambridge University Press, Cambridge, 1993) and is in contrast to the fact that any metric space embeds coarsely into an Alexandrov space of nonnegative curvature, as shown by Andoni et al. (Ann Sci Éc Norm Supér (4) 51(3):657–700, 2018). We establish this statement by proving that a metric space which is q-barycentric for some \(q\in [1,\infty )\) has metric cotype q with sharp scaling parameter. Our proof utilizes nonlinear (metric space-valued) martingale inequalities and yields sharp bounds even for some classical Banach spaces. This allows us to evaluate the bi-Lipschitz distortion of the \(\ell _\infty \) grid \([m]_\infty ^n=(\{1,\ldots ,m\}^n,\Vert \cdot \Vert _\infty )\) into \(\ell _q\) for all \(q\in (2,\infty )\), from which we deduce the following discrete converse to the fact that \(\ell _\infty ^n\) embeds with distortion O(1) into \(\ell _q\) for \(q=O(\log n)\). A rigidity theorem of Ribe (Ark Mat 14(2):237–244, 1976) implies that for every \(n\in {\mathbb {N}}\) there exists \(m\in {\mathbb {N}}\) such that if \([m]_\infty ^n\) embeds into \(\ell _q\) with distortion O(1), then q is necessarily at least a universal constant multiple of \(\log n\). Ribe’s theorem does not give an explicit upper bound on this m, but by the work of Bourgain (Geometrical aspects of functional analysis (1985/86), Springer, Berlin, 1987) it suffices to take \(m=n\), and this was the previously best-known estimate for m. We show that the above discretization statement actually holds when m is a universal constant.



  1. 1.
    Aharoni, I., Maurey, B., Mityagin, B.S.: Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces. Isr. J. Math. 52(3), 251–265 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alon, N., Lubotzky, A., Wigderson, A.: Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract). In: 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas. NV, 2001), pp. 630–637. IEEE Computer Soc, Los Alamitos, CA (2001)Google Scholar
  3. 3.
    Alon, N., Milman, V.D.: \(\lambda _1,\) isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Andoni, A., Naor, A., Neiman, O.: Snowflake universality of Wasserstein spaces. Ann. Sci. Éc. Norm. Supér. (4) 51(3), 657–700 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Andoni, A., Naor, A., Nikolov, A., Razenshteyn, I., Waingarten, E.: Locality sensitive hashing via nonlinear spectral gaps. In: STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 787–800. ACM, New York, (2018)Google Scholar
  6. 6.
    Arzhantseva, G., Delzant, T.: Examples of random groups. To appear in J. Topol. (preprint) (2011)Google Scholar
  7. 7.
    Arzhantseva, G., Tessera, R.: Relative expanders. Geom. Funct. Anal. 25(2), 317–341 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Austin, T., Naor, A.: On the bi-Lipschitz structure of Wasserstein spaces. Preprint (2017)Google Scholar
  9. 9.
    Austin, T., Naor, A., Tessera, R.: Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces. Groups Geom. Dyn. 7(3), 497–522 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.K.: Spectral embedding of k-cliques, graph partitioning and k-means. In: ITCS’16—Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp. 301–310. ACM, New York (2016)Google Scholar
  11. 11.
    Ball, K.: Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2(2), 137–172 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ball, K.: The Ribe programme. Astérisque, (352):Exp. No. 1047, viii, 147–159, 2013. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058Google Scholar
  13. 13.
    Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115(3), 463–482 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bartal, Y., Gottlieb, L.: Approximate nearest neighbor search for \(\ell _p\)-spaces (\(2<p<\infty \)) via embeddings. In: Proceedings of LATIN 2018, volume 10807 of Lecture Notes in Computer Science, pp. 120–133. Springer (2018)Google Scholar
  15. 15.
    Baudier, F.: On the metric geometry of stable metric spaces. arXiv:1409.7738 (2014)
  16. 16.
    Baudier, F., Lancien, G., Motakis, P., Schlumprecht, T.: A new coarsely rigid class of Banach spaces. arXiv:1806.00702 (2018)
  17. 17.
    Baudier, F., Lancien, G., Schlumprecht, T.: The coarse geometry of Tsirelson’s space and applications. J. Am. Math. Soc. 31(3), 699–717 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bačác, M.: Old and new challenges in Hadamard spaces. arXiv:1807.01355 (2018)
  19. 19.
    Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Volume 48 of American Mathematical Society Colloquium Publications, vol. 1. American Mathematical Society, Providence, RI (2000)zbMATHGoogle Scholar
  20. 20.
    Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata 133, 195–218 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Berg, I.D., Nikolaev, I.G.: Characterization of Aleksandrov spaces of curvature bounded above by means of the metric Cauchy–Schwarz inequality. Mich. Math. J. 67(2), 289–332 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Bourgain, J.: A Hausdorff–Young inequality for \(B\)-convex Banach spaces. Pac. J. Math. 101(2), 255–262 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bourgain, J.: The metrical interpretation of superreflexivity in Banach spaces. Isr. J. Math. 56(2), 222–230 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bourgain, J.: On lattice packing of convex symmetric sets in \({\mathbb{R}}^n\). In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical aspects of functional analysis (1985/86), volume 1267 of Lecture Notes in Mathematics, pp 5–12. Springer, Berlin (1987)Google Scholar
  25. 25.
    Bourgain, J.: Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical Aspects of Functional Analysis (1985/86), volume 1267 of Lecture Notes in Mathematics, pp. 157–167. Springer, Berlin (1987)Google Scholar
  26. 26.
    Bourgain, J., Milman, V., Wolfson, H.: On type of metric spaces. Trans. Am. Math. Soc. 294(1), 295–317 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  28. 28.
    Brown, N., Guentner, E.: Uniform embeddings of bounded geometry spaces into reflexive Banach space. Proc. Am. Math. Soc. 133(7), 2045–2050 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001)zbMATHGoogle Scholar
  30. 30.
    Burago, Y., Gromov, M., Perelman, G., Aleksandrov, A.D.: Spaces with curvatures bounded below. Uspekhi Mat. Nauk 47(2(284)), 3–51 (1992)MathSciNetGoogle Scholar
  31. 31.
    Butler, G.J.: Simultaneous packing and covering in euclidean space. Proc. Lond. Math. Soc. 3(25), 721–735 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp 195–199. Princeton Univ. Press, Princeton, N. J (1970)Google Scholar
  33. 33.
    Cheng, Q.: Sphere equivalence, property H, and Banach expanders. Studia Math. 233(1), 67–83 (2016)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P., Valette, A.: Groups with the Haagerup Property. Modern Birkhäuser Classics. Birkhäuser/Springer, Basel (2001). Gromov’s a-T-menability, Paperback reprint of the 2001 edition [ MR1852148]Google Scholar
  35. 35.
    Christiansen, T., Sturm, K.T.: Expectations and martingales in metric spaces. Stochastics 80(1), 1–17 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40(3), 396–414 (1936)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    de la Salle, M.: Towards strong Banach property (T) for \({\rm SL}(3,{{\mathbb{R}}})\). Isr. J. Math. 211(1), 105–145 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    de Laat, T., de la Salle, M.: Strong property (T) for higher-rank simple Lie groups. Proc. Lond. Math. Soc. (3) 111(4), 936–966 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    de Laat, T., Vigolo, F.: Superexpanders from group actions on compact manifolds. Geom. Dedicata. arXiv:1707.01399 (2017) (to appear)
  40. 40.
    Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Doss, S.: Moyennes conditionnelles et martingales dans un espace métrique. C. R. Acad. Sci. Paris 254, 3630–3632 (1962)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Dranishnikov, A.N., Gong, G., Lafforgue, V., Yu, G.: Uniform embeddings into Hilbert space and a question of Gromov. Can. Math. Bull. 45(1), 60–70 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Émery, M.: Stochastic Calculus in Manifolds. Universitext. Springer, Berlin (1989). (With an appendix by P.-A. Meyer)CrossRefGoogle Scholar
  44. 44.
    Enflo, P.: On a problem of Smirnov. Ark. Mat. 8, 107–109 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Enflo, P.: On the nonexistence of uniform homeomorphisms between \(L_{p}\)-spaces. Ark. Mat. 8, 103–105 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Enflo, P.: On infinite-dimensional topological groups. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), pages Exp. No. 10–11, 11. École Polytech., Palaiseau (1978)Google Scholar
  47. 47.
    Es-Sahib, A., Heinich, H.: Barycentre canonique pour un espace métrique à courbure négative. In: Séminaire de Probabilités, XXXIII, volume 1709 of Lecture Notes in Mathematics, pp. 355–370. Springer, Berlin (1999)Google Scholar
  48. 48.
    Eskenazis, A., Mendel, M., Naor, A.: Diamond convexity: a bifurcation in the Ribe program (2018)Google Scholar
  49. 49.
    Eskenazis, A., Naor, A.: On coarse and uniform embeddings into \({L}_p\). (2018)Google Scholar
  50. 50.
    Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-dimensional Geometry, volume 8 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  51. 51.
    Faraut, J., Harzallah, K.: Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24(3), 171–217 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Ferry, S.C., Ranicki, A., Rosenberg, J.: A history and survey of the Novikov conjecture. In: Ferry, S.C., Ranicki, A., Rosenberg, J. (eds.) Novikov Conjectures, Index Theorems and Rigidity, vol. 1 (Oberwolfach, 1993), volume 226 of London Mathematical Society. Lecture Note Series, pp. 7–66. Cambridge University Press, Cambridge (1995)Google Scholar
  53. 53.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(98), 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Figiel, T.: On the moduli of convexity and smoothness. Studia Math. 56(2), 121–155 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Fisher, D., Nguyen, T., van Limbeek, W.: Rigidity of warped cones and coarse geometry of expanders. Adv. Math. 346, 665–718 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Foertsch, T., Lytchak, A., Schroeder, V.: Nonpositive curvature and the Ptolemy inequality. Int. Math. Res. Not. IMRN (22):Art. ID rnm100, 15 (2007)Google Scholar
  57. 57.
    Fujiwara, K., Toyoda, T.: Random groups have fixed points on \(\rm CAT(0)\) cube complexes. Proc. Am. Math. Soc. 140(3), 1023–1031 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B (N.S.) 3, 121–226 (1967)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Garling, D.J.H.: Stable Banach spaces, random measures and Orlicz function spaces. In: Heyer, H. (ed.) Probability Measures on Groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Mathematics, pp. 121–175. Springer, Berlin (1982)Google Scholar
  60. 60.
    Giladi, O., Mendel, M., Naor, A.: Improved bounds in the metric cotype inequality for Banach spaces. J. Funct. Anal. 260(1), 164–194 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Giladi, O., Naor, A.: Improved bounds in the scaled Enflo type inequality for Banach spaces. Extracta Math. 25(2), 151–164 (2010)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Giladi, O., Naor, A., Schechtman, G.: Bourgain’s discretization theorem. Ann. Fac. Sci. Toulouse Math. (6) 21(4), 817–837 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Godefroy, G.: De Grothendieck à Naor: une promenade dans l’analyse métrique des espaces de Banach. Gaz. Math. 151, 13–24 (2017)Google Scholar
  64. 64.
    Gong, G., Yu, G.: Volume growth and positive scalar curvature. Geom. Funct. Anal. 10(4), 821–828 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Gorin, E.A.: On uniformly topological imbedding of metric spaces in Euclidean and in Hilbert space. Uspehi Mat. Nauk 14(5 (89)), 129–134 (1959)MathSciNetGoogle Scholar
  66. 66.
    Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Gromov, M.: Rigid transformations groups. In: Géométrie différentielle (Paris. 1986), volume 33 of Travaux en Cours, pp. 65–139. Hermann, Paris (1988)Google Scholar
  68. 68.
    Gromov, M.: Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano 61(9–123), 1991 (1994)MathSciNetGoogle Scholar
  69. 69.
    Gromov, M.: Asymptotic invariants of infinite groups. In: Niblo, G.A., Roller, M.A. (eds.) Geometric Group Theory, vol. 2 (Sussex, 1991), volume 182 of London Mathematical Society. Lecture Note Series, pp. 1–295. Cambridge University Press, Cambridge (1993)Google Scholar
  70. 70.
    Gromov, M.: Spaces and questions. Geom. Funct. Anal. (Special Volume, Part I):118–161 (2000) (GAFA 2000 (Tel Aviv, 1999))Google Scholar
  71. 71.
    Gromov, M.: \({\rm CAT}(\kappa )\)-spaces: construction and concentration. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 280(Geom. i Topol. 7):100–140, 299–300 (2001)Google Scholar
  72. 72.
    Gromov, M.: Random walk in random groups. Geom. Funct. Anal. 13(1), 73–146 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, english edition (2007) (Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates)Google Scholar
  74. 74.
    Guentner, E., Higson, N., Weinberger, S.: The Novikov conjecture for linear groups. Publ. Math. Inst. Hautes Études Sci. 101, 243–268 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  76. 76.
    Heinrich, S., Mankiewicz, P.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Studia Math. 73(3), 225–251 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12(4), 411–416 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, vol. II, volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham (2017) (Probabilistic methods and operator theory)Google Scholar
  80. 80.
    Isbell, J.R.: Uniform Spaces. Mathematical Surveys, No. 12. American Mathematical Society, Providence, RI (1964)CrossRefGoogle Scholar
  81. 81.
    Izeki, H., Nayatani, S.: Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geom. Dedicata 114, 147–188 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    James, R.C.: Bases and reflexivity of Banach spaces. Ann. Math. 2(52), 518–527 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    James, R.C.: A non-reflexive Banach space isometric with its second conjugate space. Proc. Natl. Acad. Sci. U.S.A. 37, 174–177 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    James, R.C.: A nonreflexive Banach space that is uniformly nonoctahedral. Isr. J. Math. 18, 145–155 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    James, R.C.: Nonreflexive spaces of type \(2\). Isr. J. Math. 30(1–2), 1–13 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    James, R.C., Lindenstrauss, J.: The octahedral problem for Banach spaces. Various Publication Series, No. 24, pp. 100–120 (1975)Google Scholar
  87. 87.
    Johnson, W.B., Randrianarivony, N.L.: \(l_p (p>2)\) does not coarsely embed into a Hilbert space. Proc. Am. Math. Soc. 134(4), 1045–1050 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Kalton, N.J.: Coarse and uniform embeddings into reflexive spaces. Q. J. Math. 58(3), 393–414 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Kalton, N.J.: The nonlinear geometry of Banach spaces. Rev. Mat. Complut. 21(1), 7–60 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Kalton, N.J.: Lipschitz and uniform embeddings into \(\ell _\infty \). Fund. Math. 212(1), 53–69 (2011)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Kalton, N.J., Randrianarivony, N.L.: The coarse Lipschitz geometry of \(l_p\oplus l_q\). Math. Ann. 341(1), 223–237 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Kasparov, G., Yu, G.: The coarse geometric Novikov conjecture and uniform convexity. Adv. Math. 206(1), 1–56 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Kelleher, C., Miller, D., Osborn, T., Weston, A.: Strongly non-embeddable metric spaces. Topol. Appl. 159(3), 749–755 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis. Math. Ann. 334(4), 821–852 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Kleiner, B., Leeb, B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. 86, 115–197 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Kondo, T.: \({\rm CAT}(0)\) spaces and expanders. Math. Z. 271(1–2), 343–355 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Krivine, J.-L., Maurey, B.: Espaces de Banach stables. Isr. J. Math. 39(4), 273–295 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Kwapień, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. Studia Math. 82(1), 91–106 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Kwapień, S., Schütt, C.: Some combinatorial and probabilistic inequalities and their application to Banach space theory. II. Studia Math. 95(2), 141–154 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Lafforgue, V.: Un renforcement de la propriété (T). Duke Math. J. 143(3), 559–602 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Lafforgue, V.: Propriété (T) renforcée banachique et transformation de Fourier rapide. J. Topol. Anal. 1(3), 191–206 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Lafforgue, V., Naor, A.: Vertical versus horizontal Poincaré inequalities on the Heisenberg group. Isr. J. Math. 203(1), 309–339 (2014)zbMATHCrossRefGoogle Scholar
  103. 103.
    Lafont, J.-F., Prassidis, S.: Roundness properties of groups. Geom. Dedicata 117, 137–160 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Lancien, G., Petitjean, C., Procházka, A.: On the coarse geometry of the James space. arXiv:1805.05171 (2018)
  105. 105.
    Lang, U., Pavlović, B., Schroeder, V.: Extensions of Lipschitz maps into Hadamard spaces. Geom. Funct. Anal. 10(6), 1527–1553 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Lebedeva, N., Petrunin, A.: Curvature bounded below: a definition a la Berg–Nikolaev. Electron. Res. Announc. Math. Sci. 17, 122–124 (2010)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Lee, J.R., Naor, A.: Embedding the diamond graph in \(L_p\) and dimension reduction in \(L_1\). Geom. Funct. Anal. 14(4), 745–747 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Lee, J.R., Naor, A., Peres, Y.: Trees and Markov convexity. Geom. Funct. Anal. 18(5), 1609–1659 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Lennard, C.J., Tonge, A.M., Weston, A.: Generalized roundness and negative type. Mich. Math. J. 44(1), 37–45 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Li, S.: Markov convexity and nonembeddability of the Heisenberg group. Ann. Inst. Fourier (Grenoble) 66(4), 1615–1651 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Li, S., Naor, A.: Discretization and affine approximation in high dimensions. Isr. J. Math. 197(1), 107–129 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Liao, B.: Strong Banach property (T) for simple algebraic groups of higher rank. J. Topol. Anal. 6(1), 75–105 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Matoušek, J.: On embedding expanders into \(l_p\) spaces. Isr. J. Math. 102, 189–197 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  116. 116.
    Maurey, B.: Type, cotype and \(K\)-convexity. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1299–1332. North-Holland, Amsterdam (2003)Google Scholar
  117. 117.
    Maurey, B., Milman, V.D., Tomczak-Jaegermann, N.: Asymptotic infinite-dimensional theory of Banach spaces. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric aspects of functional analysis (Israel, 1992–1994), volume 77 of Operator Theory: Advances and Applications, pp. 149–175. Birkhäuser, Basel (1995)zbMATHGoogle Scholar
  118. 118.
    Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58(1), 45–90 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Mendel, M., Naor, A.: Some applications of Ball’s extension theorem. Proc. Am. Math. Soc. 134(9), 2577–2584 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Mendel, M., Naor, A.: Scaled Enflo type is equivalent to Rademacher type. Bull. Lond. Math. Soc. 39(3), 493–498 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Mendel, M., Naor, A.: Metric cotype. Ann. Math. (2) 168(1), 247–298 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Mendel, M., Naor, A.: Towards a calculus for non-linear spectral gaps. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, 17–19 Jan 2010, pp. 236–255 (2010)Google Scholar
  123. 123.
    Mendel, M., Naor, A.: Spectral calculus and Lipschitz extension for barycentric metric spaces. Anal. Geom. Metr. Spaces 1, 163–199 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Mendel, M., Naor, A.: Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci. 119, 1–95 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    Mendel, M., Naor, A.: Expanders with respect to Hadamard spaces and random graphs. Duke Math. J. 164(8), 1471–1548 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Mimura, M.: Sphere equivalence, Banach expanders, and extrapolation. Int. Math. Res. Not. IMRN 12, 4372–4391 (2015)MathSciNetzbMATHGoogle Scholar
  127. 127.
    Naor, A.: An application of metric cotype to quasisymmetric embeddings. In: Dai, X., Rong, X. (eds.) Metric and Differential Geometry, volume 297 of Progress in Mathematics, pp. 175–178. Birkhäuser/Springer, Basel (2012)CrossRefGoogle Scholar
  128. 128.
    Naor, A.: An introduction to the Ribe program. Jpn. J. Math. 7(2), 167–233 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Naor, A.: Comparison of metric spectral gaps. Anal. Geom. Metr. Spaces 2, 1–52 (2014)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Naor, A.: Discrete Riesz transforms and sharp metric \(X_p\) inequalities. Ann. Math. (2) 184(3), 991–1016 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Naor, A.: A spectral gap precludes low-dimensional embeddings. In: 33rd International Symposium on Computational Geometry, volume 77 of LIPIcs. Leibniz International Proceedings in Informatics, Art. No. 50, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)Google Scholar
  132. 132.
    Naor, A.: Metric dimension reduction: a snapshot of the Ribe program. In: Proceedings of the 2018 International Congress of Mathematicians, Rio de Janeiro, vol. I, pp. 759–838 (2018)Google Scholar
  133. 133.
    Naor, A., Rabani, Y.: On approximate nearest neighbor search in \(\ell _p\) , \(p > 2\). Unpublished manuscript, available on request (2006)Google Scholar
  134. 134.
    Naor, A., Rabani, Y.: On Lipschitz extension from finite subsets. Isr. J. Math. 219(1), 115–161 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Naor, A., Schechtman, G.: Metric \(X_p\) inequalities. Forum Math. Pi 4(e3), 81 (2016)zbMATHMathSciNetGoogle Scholar
  136. 136.
    Naor, A., Schechtman, G.: Pythagorean powers of hypercubes. Ann. Inst. Fourier (Grenoble) 66(3), 1093–1116 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Naor, A., Schechtman, G.: Obstructions to metric embeddings of Schatten classes. Preprint (2018)Google Scholar
  138. 138.
    Naor, A., Silberman, L.: Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147(5), 1546–1572 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Naor, A., Young, R.: Vertical perimeter versus horizontal perimeter. Ann. Math. (2) 188(1), 171–279 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Nowak, P.W., Yu, G.: Large Scale Geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2012)CrossRefGoogle Scholar
  141. 141.
    Ohta, S.-I.: Markov type of Alexandrov spaces of non-negative curvature. Mathematika 55(1–2), 177–189 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Osajda, D.: Small cancellation labellings of some infinite graphs and applications. arXiv:1406.5015 (2014)
  143. 143.
    Ostrovskii, M.I.: Metric Embeddings, volume 49 of De Gruyter Studies in Mathematics. De Gruyter, Berlin (2013). (Bilipschitz and coarse embeddings into Banach spaces)Google Scholar
  144. 144.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Ozawa, N.: A note on non-amenability of \({\cal{B}}(l_p)\) for \(p=1,2\). Int. J. Math. 15(6), 557–565 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  146. 146.
    Perelman, G.: Spaces with curvature bounded below. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 517–525. Birkhäuser, Basel (1995)Google Scholar
  147. 147.
    Pestov, V.G.: A theorem of Hrushovski–Solecki–Vershik applied to uniform and coarse embeddings of the Urysohn metric space. Topol. Appl. 155(14), 1561–1575 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20(3–4), 326–350 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Pisier, G.: Complex interpolation between Hilbert, Banach and operator spaces. Mem. Am. Math. Soc. 208(978), vi+78 (2010)MathSciNetzbMATHGoogle Scholar
  150. 150.
    Pisier, G.: Martingales in Banach Spaces, volume 155 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)Google Scholar
  151. 151.
    Pisier, G., Xu, Q.H.: Random series in the real interpolation spaces between the spaces \(v_p\). In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical Aspects of Functional Analysis (1985/86), volume 1267 of Lecture Notes in Mathematics, pp. 185–209. Springer, Berlin (1987)Google Scholar
  152. 152.
    Plaut, C.: Metric spaces of curvature \(\ge k\). In: Sher, R.B., Daverman, R.J. (eds.) Handbook of Geometric Topology, pp. 819–898. North-Holland, Amsterdam (2002)zbMATHGoogle Scholar
  153. 153.
    Prassidis, S., Weston, A.: Manifestations of nonlinear roundness in analysis, discrete geometry and topology. In: Arzhantseva, G., Valette, V. (eds.) Limits of Graphs in Group Theory and Computer Science, pp. 141–170. EPFL Press, Lausanne (2009)zbMATHGoogle Scholar
  154. 154.
    Randrianarivony, N.L.: Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space. Proc. Am. Math. Soc. 134(5), 1315–1317 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Raynaud, Y.: Espaces de Banach superstables, distances stables et homéomorphismes uniformes. Isr. J. Math. 44(1), 33–52 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. Math. (2) 155(1), 157–187 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Ribe, M.: On uniformly homeomorphic normed spaces. Ark. Mat. 14(2), 237–244 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Robertson, G.: Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory 8(1), 163–172 (1998)MathSciNetzbMATHGoogle Scholar
  159. 159.
    Roe, J.: Lectures on Coarse Geometry. volume 31 of University Lecture Series. American Mathematical Society, Providence, RI (2003)zbMATHCrossRefGoogle Scholar
  160. 160.
    Roe, J.: Warped cones and property A. Geom. Topol. 9, 163–178 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Rogers, C.A.: A note on coverings and packings. J. Lond. Math. Soc. 25, 327–331 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Sato, T.: An alternative proof of Berg and Nikolaev’s characterization of \({{\rm CAT}}(0)\)-spaces via quadrilateral inequality. Arch. Math. (Basel) 93(5), 487–490 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Sawicki, D.: Super-expanders and warped cones. arXiv:1704.03865 (2017)
  164. 164.
    Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Sela, Z.: Uniform embeddings of hyperbolic groups in Hilbert spaces. Isr. J. Math. 80(1–2), 171–181 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Solecki, S.: Extending partial isometries. Isr. J. Math. 150, 315–331 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Sturm, K.T.: Metric spaces of lower bounded curvature. Expos. Math. 17(1), 35–47 (1999)MathSciNetzbMATHGoogle Scholar
  168. 168.
    Sturm, K.-T.: Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab. 30(3), 1195–1222 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. In: Auscher, P., Coulhon, T., Grigor’yan, A. (eds.) Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), volume 338 of Contemporary Mathematics, pp. 357–390. American Mathematical Society, Providence, RI (2003)Google Scholar
  170. 170.
    Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    Toyoda, T.: CAT(0) spaces on which a certain type of singularity is bounded. Kodai Math. J. 33(3), 398–415 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    Toyoda, T.: Fixed point property for a \({{\rm CAT}}(0)\) space which admits a proper cocompact group action. Kodai Math. J. 39(1), 129–153 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    Tsirelson, B.S.: It is impossible to imbed \(\ell _{p}\) or \(c_{0}\) into an arbitrary Banach space. Funkc. Anal. i Prilož. 8(2), 57–60 (1974)Google Scholar
  174. 174.
    Tukia, P., Väisälä, J.: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 97–114 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Tyson, J.T., Wu, J.-M.: Characterizations of snowflake metric spaces. Ann. Acad. Sci. Fenn. Math. 30(2), 313–336 (2005)MathSciNetzbMATHGoogle Scholar
  176. 176.
    Veomett, E., Wildrick, K.: Spaces of small metric cotype. J. Topol. Anal. 2(4), 581–597 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    Vershik, A.M.: Globalization of the partial isometries of metric spaces and local approximation of the group of isometries of Urysohn space. Topol. Appl. 155(14), 1618–1626 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    Vigolo, F.: Measure expanding actions, expanders and warped cones. Trans. Am. Math. Soc. 371(3), 1951–1979 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    Villani, C.: Optimal Transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009). (Old and new)Google Scholar
  180. 180.
    Wang, M.-T.: A fixed point theorem of discrete group actions on Riemannian manifolds. J. Differ. Geom. 50(2), 249–267 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Yu, G.: The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Yu, G.: Hyperbolic groups admit proper affine isometric actions on \(l^p\)-spaces. Geom. Funct. Anal. 15(5), 1144–1151 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  183. 183.
    Yu, G.: Higher index theory of elliptic operators and geometry of groups. In: International Congress of Mathematicians. Vol. II, pages 1623–1639. Eur. Math. Soc., Zürich (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexandros Eskenazis
    • 1
  • Manor Mendel
    • 2
  • Assaf Naor
    • 1
    Email author
  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Mathematics and Computer Science DepartmentThe Open University of IsraelRaananaIsrael

Personalised recommendations