Period-index bounds for arithmetic threefolds

  • Benjamin AntieauEmail author
  • Asher Auel
  • Colin Ingalls
  • Daniel Krashen
  • Max Lieblich


The standard period-index conjecture for Brauer groups of p-adic surfaces S predicts that \({{\,\mathrm{ind}\,}}(\alpha )|{{\,\mathrm{per}\,}}(\alpha )^3\) for every \(\alpha \in {{\,\mathrm{Br}\,}}(\mathbf {Q}_p(S))\). Using Gabber’s theory of prime-to-\(\ell \) alterations and the deformation theory of twisted sheaves, we prove that \({{\,\mathrm{ind}\,}}(\alpha )|{{\,\mathrm{per}\,}}(\alpha )^4\) for \(\alpha \) of period prime to 6p, giving the first uniform period-index bounds over such fields.

Mathematics Subject Classification

14F22 14J20 16K50 



We would like to thank the Structured Quartet Research Ensembles (SQuaREs) program of the American Institute of Mathematics (AIM) for its hospitality and support for this project. We also thank the Banff International Research Station (BIRS) and the Institute for Computational and Experimental Research in Mathematics (ICERM) for wonderful working environments during the final stages of preparation of this paper. We thank François Charles, Jean-Louis Colliot-Thélène, Ronen Mukamel, R. Parimala, Eryn Schultz, Lenny Taelman, and Tony Várilly-Alvarado for helpful discussions. We especially thank Dan Abramovich, Sam Payne, and Dhruv Ranganathan for expert advice on toroidal geometry. Finally, we are very grateful to Minseon Shin for several comments and corrections on an earlier draft and to the referees for their detailed comments on this paper.


  1. 1.
    Abramovich, D., Karu, K.: Weak semistable reduction in characteristic 0. Invent. Math. 139(2), 241–273 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antieau, B., Williams, B.: Unramified division algebras do not always contain Azumaya maximal orders. Invent. Math. 197(1), 47–56 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Artin, M.: Brauer–Severi varieties. In: Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, pp. 194–210. Springer, Berlin (1982)Google Scholar
  4. 4.
    Auel, A., Brussel, E., Garibaldi, S., Vishne, U.: Open problems in central simple algebras. Transform. Groups 16(1), 219–264 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auslander, M., Goldman, O.: The Brauer group of a commutative ring. Trans. Am. Math. Soc. 97, 367–409 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bourbaki, N.: Éléments de mathématique. Algèbre commutative. Chapitres 1 à 4. Masson, Paris (1985)Google Scholar
  8. 8.
    Cesnavicius, K.: Purity for the Brauer group. accepted for publication at Duke Math. J. (2017)Google Scholar
  9. 9.
    Colliot-Thélène, J.L.: Birational invariants, purity and the Gersten conjecture. In: \(K\)-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., vol. 58, pp. 1–64. Am. Math. Soc., Providence, RI (1995)Google Scholar
  10. 10.
    Colliot-Thélène, J.L.: Algèbres simples centrales sur les corps de fonctions de deux variables (d’après A. J. de Jong). Astérisque (307), Exp. No. 949, ix, 379–413 (2006). Séminaire Bourbaki. Vol. 2004/2005Google Scholar
  11. 11.
    Colliot-Thélène, J.L.: Groupe de Chow des zéro-cycles sur les variétés \(p\)-adiques (d’après S. Saito, K. Sato et al.). Astérisque (339), Exp. No. 1012, vii, 1–30 (2011). Séminaire Bourbaki. Vol. 2009/2010Google Scholar
  12. 12.
    Conrad, B.: Math 776. From normal crossings to strict normal crossings. Accessed July 4, 2018
  13. 13.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)Google Scholar
  14. 14.
    de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    de Jong, A.J.: A result of Gabber (2003). Accessed 23 Jan 2019
  16. 16.
    de Jong, A.J.: The period-index problem for the Brauer group of an algebraic surface. Duke Math. J. 123(1), 71–94 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Eisenbud, D.: Commutative Algebra, with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)zbMATHGoogle Scholar
  18. 18.
    Faltings, G., Chai, C.L.: Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22. Springer, Berlin (1990). With an appendix by David MumfordGoogle Scholar
  19. 19.
    Gabber, O.: Some theorems on Azumaya algebras. In: The Brauer group (Sem., Les Plans-sur-Bex, 1980), Lecture Notes in Math., vol. 844, pp. 129–209. Springer, Berlin (1981)Google Scholar
  20. 20.
    Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Grothendieck, A.: Éléments de géométrie algébrique. II. étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. (8), 222 (1961)Google Scholar
  22. 22.
    Grothendieck, A.: Éléments de géométrie algébrique. III. étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math. (11), 167 (1961)Google Scholar
  23. 23.
    Grothendieck, A.: Le groupe de Brauer. II. Théorie cohomologique. In: Dix Exposés sur la Cohomologie des Schémas, pp. 67–87. North-Holland, Amsterdam (1968)Google Scholar
  24. 24.
    Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments. In: Dix Exposés sur la Cohomologie des Schémas, pp. 88–188. North-Holland, Amsterdam (1968)Google Scholar
  25. 25.
    Harbater, D., Hartmann, J., Krashen, D.: Applications of patching to quadratic forms and central simple algebras. Invent. Math. 178(2), 231–263 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hoobler, R.T.: A cohomological interpretation of Brauer groups of rings. Pacific J. Math. 86(1), 89–92 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Illusie, L.: Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239. Springer, Berlin (1971)Google Scholar
  28. 28.
    Illusie, L.: On Gabber’s refined uniformization (2009). Lectures at the University of TokyoGoogle Scholar
  29. 29.
    Illusie, L., Laszlo, Y., Orgogozo, F.: Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Séminaire à l’École polytechnique 2006–2008, Astérisque pp. 363–364 (2014)Google Scholar
  30. 30.
    Kato, K.: A Hasse principle for two-dimensional global fields. J. Reine Angew. Math. 366, 142–183 (1986). With an appendix by Jean-Louis Colliot-ThélèneGoogle Scholar
  31. 31.
    Kempf, G., Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings I Lecture Notes in Mathematics, vol. 339. Springer, Berlin (1973)CrossRefzbMATHGoogle Scholar
  32. 32.
    Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand. 39(1), 19–55 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kozlov, D.: Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin (2008)Google Scholar
  34. 34.
    Leep, D.B.: The \(u\)-invariant of \(p\)-adic function fields. J. Reine Angew. Math. 679, 65–73 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lieblich, M.: Moduli of twisted sheaves. Duke Math. J. 138(1), 23–118 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lieblich, M.: Twisted sheaves and the period-index problem. Compos. Math. 144(1), 1–31 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lieblich, M.: Period and index in the Brauer group of an arithmetic surface. J. Reine Angew. Math. 659, 1–41 (2011). With an appendix by Daniel KrashenGoogle Scholar
  38. 38.
    Lieblich, M.: The period-index problem for fields of transcendence degree 2. Ann. Math. 182(2), 391–427 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Matzri, E.: Symbol length in the Brauer group of a field. Trans. Am. Math. Soc. 368(1), 413–427 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Milnor, J.: Introduction to algebraic \(K\)-theory. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1971). Annals of Mathematics Studies, No. 72Google Scholar
  41. 41.
    Parimala, R., Suresh, V.: Period-index and \(u\)-invariant questions for function fields over complete discretely valued fields. Invent. Math. 197(1), 215–235 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Payne, S.: Boundary complexes and weight filtrations. Mich. Math. J 62(2), 293–322 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Pirutka, A.: A bound to kill the ramification over function fields. J. Algebra 377, 173–178 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Saltman, D.J.: Division algebras over \(p\)-adic curves. J. Ramanujan Math. Soc. 12, 25–47 (1997). Correction, J. Ramanujan Math. Soc. 13 (1998), no. 2, 125–129Google Scholar
  45. 45.
    Saltman, D.J.: Cyclic algebras over \(p\)-adic curves. J. Algebra 314(2), 817–843 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Thomason, R.W., Trobaugh, T.: Higher algebraic \(K\)-theory of schemes and of derived categories. In: The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, pp. 247–435. Birkhäuser, Boston, MA (1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Benjamin Antieau
    • 1
    Email author
  • Asher Auel
    • 2
  • Colin Ingalls
    • 3
  • Daniel Krashen
    • 4
  • Max Lieblich
    • 5
  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicago, IllinoisUSA
  2. 2.Department of MathematicsYale UniversityNew Haven, ConnecticutUSA
  3. 3.School of Mathematics and StatisticsCarlton UniversityOttawa, OntarioCanada
  4. 4.Department of MathematicsRutgers, The State University of New JerseyNewark, New JerseyUSA
  5. 5.Department of MathematicsUniversity of WashingtonSeattle, WashingtonUSA

Personalised recommendations