Advertisement

Inventiones mathematicae

, Volume 216, Issue 1, pp 125–152 | Cite as

Maximally writhed real algebraic links

  • Grigory MikhalkinEmail author
  • Stepan Orevkov
Article
  • 111 Downloads

Abstract

Oleg Viro introduced an invariant of rigid isotopy for real algebraic knots and links in \(\mathbb {RP}^3\) which is not a topological isotopy invariant. In this paper we study real algebraic links of degree d with the maximal value of this invariant. We show that these links admit entirely topological description. In particular, these links are characterized by the property that any of their planar diagram has at least \((d-1)(d-2)/2-g-1\) crossing points where g is the genus of the complexification. Also we show that these links are characterized by the property that any generic plane intersects them in at least \(d-2\) real points. In addition we give a complete topological classification of these links.

Notes

Acknowledgements

We are grateful to Oleg Viro for very useful and fruitful discussions.

References

  1. 1.
    Björklund, J.: Real algebraic knots of low degree. J. Knot Theory Ramif. 20(9), 1285–1309 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Drobotukhina, J.: Classification of links in \(RP^3\) with at most six crossings. Adv. Sov. Math. 18, 87–121 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    ElRifai, E., Morton, H.: Algorithms for positive braids. Q. J. Math. Oxf. Ser. 45(2), 479–497 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    González-Meneses, J.: The \(n\)th root of a braid is unique up conjugacy. Algebr. Geom. Topol. 3, 1103–1118 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley interscience, New York (1978)zbMATHGoogle Scholar
  6. 6.
    Gross, B.H., Harris, J.: Real algebraic curves. Ann. Sci. École Norm. Sup. 14(4), 157–182 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harnack, A.: Über die Vielfaltigkeit der ebenen algebraischen Kurven. Math. Ann. 10, 189–199 (1876)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kharlamov, V.M., Orevkov, S.Yu.: The number of trees half of whose vertices are leaves and asymptotic enumeration of plane real algebraic curves. J. Combin. Theory Ser. A 105, 127–142 (2004)Google Scholar
  9. 9.
    Klein, F.: Ueber eine neue Art von Riemann’schen Flächen. Math. Ann. 10, 398–416 (1876)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Manfredi, E.: Lift in the 3-sphere of knots and links in lens spaces. J. Knot Theory Ramif. 23, 1450022 (2014). [21 pages]MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mikhalkin, G.: Real algebraic curves, the moment map and amoebas. Ann. Math. 151(2), 309–326 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mikhalkin, G.: Quantum indices and refined enumeration of real plane curves. Acta Math. 219, 135–180 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mikhalkin, G., Orevkov, S.: Real algebraic knots and links of low degree. J. Knot Theory Ramif. 26, 1642010 (2016). 34 pagesCrossRefzbMATHGoogle Scholar
  14. 14.
    Mikhalkin, G.B., Orevkov, S.Yu.: Topology of maximally writhed real algebraic knots. Dokl. Akad. Nauk. 478(2), 141–144 (2018). (in Russian) (English transl., Doklady Math. 97, 28–31 (2018))Google Scholar
  15. 15.
    Murasugi, K.: On the Braid index of alternating links. Trans. Am. Math. Soc. 326(1), 237–260 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Natanzon, S.M.: Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves. Usp. Mat. Nauk. 54(6), 3–60 (1999). (in Russian); (English transl. Russian Math. Surv. 54, 1091–1147 (1999))CrossRefzbMATHGoogle Scholar
  17. 17.
    Orevkov, S.Yu.: Classification of flexible \(M\)-curves of degree \(8\) up to isotopy. GAFA Geom. Funct. Anal. 12, 723–755 (2002)Google Scholar
  18. 18.
    Petrovsky, I.G.: On the topology of real plane algebraic curves. Ann. Math. 39, 187–209 (1938)MathSciNetGoogle Scholar
  19. 19.
    Rokhlin, V.A.: Complex topological characteristics of real algebraic curves. Usp. Mat. Nauk. 33(5), 77–89 (1978). (in Russian); (English transl. Russian Math Surv. 33(5), 85–98 (1978))MathSciNetzbMATHGoogle Scholar
  20. 20.
    Viro, O.Ya.: Curves of degree 7, curves of degree 8, and the Ragsdale conjecture. Doklady AN SSSR 254(6), 1306–1310 (1980). (in Russian) (English transl., Sov. Math. Dokl. 22, 566–570 (1980))Google Scholar
  21. 21.
    Viro, O.Ya.: Real algebraic plane curves: constructions with controlled topology. Algebra Anal. 1(5), 1–73 (1989). (in Russian) (English transl., Leningrad J. Math. 1, 1059–1134 (1990))Google Scholar
  22. 22.
    Viro, O.: Encomplexing the writhe. In: Topology, Ergodic Theory, Real Algebraic Geometry. Rokhlins Memorial, AMS Translations Series 202, pp. 241–256. AMS, Providence, RI (2002). arXiv:math/0005162

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveCarougeSwitzerland
  2. 2.Steklov Mathematical InstituteMoscowRussia
  3. 3.IMT, Université Paul SabatierToulouseFrance

Personalised recommendations