Inventiones mathematicae

, Volume 215, Issue 2, pp 651–712 | Cite as

The Farrell–Jones Conjecture for mapping class groups

  • Arthur Bartels
  • Mladen BestvinaEmail author


We prove the Farrell–Jones Conjecture for mapping class groups. The proof uses the Masur–Minsky theory of the large scale geometry of mapping class groups and the geometry of the thick part of Teichmüller space. The proof is presented in an axiomatic setup, extending the projection axioms in Bestvina et al. (Publ Math Inst Hautes Études Sci 122:1–64, 2015). More specifically, we prove that the action of \({{\,\mathrm{Mod(\Sigma )}\,}}\) on the Thurston compactification of Teichmüller space is finitely \(\mathcal F\)-amenable for the family \({\mathcal {F}}\) consisting of virtual point stabilizers.

Mathematics Subject Classification

20F65 18F25 



Our collaboration started during a workshop at the Hausdorff Institute for Mathematics in Bonn in April 2015. We thank Wolfgang Lück for inviting us to this workshop. We thank Ken Bromberg, Jon Chaika, Howard Masur, and Kasra Rafi for many interesting conversations about Teichmüller theory. We especially thank Kasra Rafi for his help with Theorem 8.1. We thank the referee for a long list with helpful comments. The first author is supported by the SFB 878 in Münster. The second author is supported by the NSF under the Grant Number DMS-1308178.


  1. 1.
    Ahlfors, L.V.: Lectures on Quasiconformal Mappings. University Lecture Series, vol. 38, 2nd edn. American Mathematical Society, Providence (2006). (With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard)Google Scholar
  2. 2.
    Aougab, T.: Uniform hyperbolicity of the graphs of curves. Geom. Topol. 17(5), 2855–2875 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arzhantseva, G.N., Cashen, C.H., Gruber, D., Hume, D.: Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction. Doc. Math. 22, 1193–1224 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bartels, A.: Coarse flow spaces for relatively hyperbolic groups. Compos. Math. 153(4), 745–779 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bartels, A., Farrell, F.T., Lück, W.: The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups. J. Am. Math. Soc. 27(2), 339–388 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bartels, A., Lück, W.: On twisted group rings with twisted involutions, their module categories and \({L}\)-theory. In: Cohomology of groups and algebraic \(K\)-theory, volume 12 of Advanced Lectures in Mathematics, Somerville, USA, pp. 1–55. International Press (2009)Google Scholar
  7. 7.
    Bartels, A., Lück, W.: The Borel conjecture for hyperbolic and CAT(0)-groups. Ann. Math. 2(175), 631–689 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bartels, A., Lück, W., Reich, H.: Equivariant covers for hyperbolic groups. Geom. Topol. 12(3), 1799–1882 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bartels, A., Lück, W., Reich, H.: The \(K\)-theoretic Farrell–Jones conjecture for hyperbolic groups. Invent. Math. 172(1), 29–70 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bartels, A., Lück, W., Reich, H.: On the Farrell–Jones conjecture and its applications. J. Topol. 1(1), 57–86 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bartels, A., Lück, W., Reich, H., Rüping, H.: K- and L-theory of group rings over \(GL_n({ Z})\). Publ. Math. Inst. Hautes Études Sci. 119, 97–125 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bartels, A., Reich, H.: Coefficients for the Farrell–Jones Conjecture. Adv. Math. 209(1), 337–362 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Behrstock, J.A.: Asymptotic geometry of the mapping class group and Teichmüller space. Geom. Topol. 10, 1523–1578 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bestvina, M., Bromberg, K., Fujiwara, K.: Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci. 122, 1–64 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bestvina, M., Bromberg, K., Fujiwara, K., Sisto, A.: Acylindrical actions on projection complexes. arXiv:1711.08722
  16. 16.
    Bestvina, M., Feighn, M.: Hyperbolicity of the complex of free factors. Adv. Math. 256, 104–155 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bestvina, M., Feighn, M.: Subfactor projections. J. Topol. 7(3), 771–804 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bestvina, M., Reynolds, P.: The boundary of the complex of free factors. Duke Math. J. 164(11), 2213–2251 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Birman, J.S., Lubotzky, A., McCarthy, J.: Abelian and solvable subgroups of the mapping class groups. Duke Math. J. 50(4), 1107–1120 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bonahon, F.: Geodesic laminations on surfaces. In: Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998), volume 269 of Contemporary Mathematics, pp. 1–37. American Mathematical Society, Providence (2001)Google Scholar
  21. 21.
    Bowditch, B.H.: Intersection numbers and the hyperbolicity of the curve complex. J. Reine Angew. Math. 598, 105–129 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Bowditch, B.H.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3), 1250016, 66 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bowditch, B.H.: Uniform hyperbolicity of the curve graphs. Pac. J. Math. 269(2), 269–280 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces After Nielsen and Thurston. London Mathematical Society Student Texts, vol. 9. Cambridge University Press, Cambridge (1988)zbMATHCrossRefGoogle Scholar
  25. 25.
    Clay, M., Rafi, K., Schleimer, S.: Uniform hyperbolicity of the curve graph via surgery sequences. Algebr. Geom. Topol. 14(6), 3325–3344 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Eskin, A., Mirzakhani, M., Rafi, K.: Counting closed geodesics in strata. arXiv:1206.5574
  27. 27.
    Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8(5), 810–840 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  29. 29.
    Farrell, F.T., Jones, L.E.: \(K\)-theory and dynamics. I. Ann. Math. (2) 124(3), 531–569 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Farrell, F.T., Jones, L.E.: Isomorphism conjectures in algebraic \({K}\)-theory. J. Am. Math. Soc. 6(2), 249–297 (1993)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Société Mathématique de France, Paris, 1991. Séminaire Orsay, Reprint of ıt Travaux de Thurston sur les surfaces, Soc. Math. France, Paris, 1979 [ MR0568308 (82m:57003)], Astérisque No. 66-67 (1991)Google Scholar
  32. 32.
    Gardiner, F.P., Masur, H.: Extremal length geometry of Teichmüller space. Complex Var. Theory Appl. 16(2–3), 209–237 (1991)zbMATHGoogle Scholar
  33. 33.
    Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987)Google Scholar
  34. 34.
    Groves, D., Manning, J.F.: Dehn filling in relatively hyperbolic groups. Isr. J. Math. 168, 317–429 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Guentner, E., Willett, R., Yu, G.: Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and \(C^*\)-algebras. Math. Ann. 367(1–2), 785–829 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Hamenstädt, U.: The boundary of the free splitting graph and the free factor graph. arXiv:1211.1630
  37. 37.
    Hamenstädt, U.: Geometry of the mapping class groups. I. Boundary amenability. Invent. Math. 175(3), 545–609 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Hempel, J.: 3-manifolds as viewed from the curve complex. Topology 40(3), 631–657 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Hensel, S., Przytycki, P., Webb, R.C.H.: 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs. J. Eur. Math. Soc. (JEMS) 17(4), 755–762 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Higson, N.: Bivariant \(K\)-theory and the Novikov conjecture. Geom. Funct. Anal. 10(3), 563–581 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hubbard, J.H.: Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1. Matrix Editions, Ithaca, NY (2006). Teichmüller theory, With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra, With forewords by William Thurston and Clifford EarleGoogle Scholar
  42. 42.
    Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmüller Spaces. Springer, Tokyo (1992). (Translated and revised from the Japanese by the authors)zbMATHCrossRefGoogle Scholar
  43. 43.
    Ivanov, N.V.: Subgroups of Teichmüller Modular Groups, Translations of Mathematical Monographs, vol. 115. American Mathematical Society, Providence (1992). (Translated from the Russian by E. J. F, Primrose and revised by the author)CrossRefGoogle Scholar
  44. 44.
    Ivanov, N.V.: Isometries of Teichmüller spaces from the point of view of Mostow rigidity. In: Topology, ergodic theory, real algebraic geometry, American Mathematical Society Translations: Series 2, vol. 202, pp. 131–149. American Mathematical Society, Providence (2001)Google Scholar
  45. 45.
    Kammeyer, H., Lück, W., Rüping, H.: The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups. Geom. Topol. 20(3), 1275–1287 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Kapovich, M.: Hyperbolic Manifolds and Discrete Groups. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2009). (Reprint of the 2001 edition)Google Scholar
  47. 47.
    Kasprowski, D.: On the \(K\)-theory of groups with finite decomposition complexity. Proc. Lond. Math. Soc. (3) 110(3), 565–592 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995). (With a supplementary chapter by Katok and Leonardo Mendoza)zbMATHCrossRefGoogle Scholar
  49. 49.
    Kida, Y.: The mapping class group from the viewpoint of measure equivalence theory. Mem. Am. Math. Soc. 196(916), viii+190 (2008)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Klarreich, E.: The boundary at infinity of the complex of curves and the relative Teichmüller space. arXiv:1803.10339, (1999)
  51. 51.
    Korkmaz, M., Papadopoulos, A.: On the arc and curve complex of a surface. Math. Proc. Camb. Philos. Soc. 148(3), 473–483 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Lenzhen, A., Masur, H.: Criteria for the divergence of pairs of Teichmüller geodesics. Geom. Dedicata 144, 191–210 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Levitt, G.: Foliations and laminations on hyperbolic surfaces. Topology 22(2), 119–135 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Lück, W.: \(K\)- and \(L\)-theory of group rings. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 1071–1098. Hindustan Book Agency, New Delhi (2010)Google Scholar
  55. 55.
    Lück, W., Reich, H.: The Baum-Connes and the Farrell-Jones conjectures in \(K\)- and \(L\)-theory. In: Friedlander, E., Grayson, D. (eds.) Handbook of \(K\)-Theory, vol. 1, pp. 703–842. Springer, Berlin (2005)zbMATHCrossRefGoogle Scholar
  56. 56.
    Maher, J., Tiozzo, G.: Random walks on weakly hyperbolic groups. J. Reine Angew. Math. 742, 187–239 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Mangahas, J.: A recipe for short-word pseudo-Anosovs. Am. J. Math. 135(4), 1087–1116 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Masur, H.: On a class of geodesics in Teichmüller space. Ann. Math. (2) 102(2), 205–221 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Masur, H.: Hausdorff dimension of the set of nonergodic foliations of a quadratic differential. Duke Math. J. 66(3), 387–442 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1), 103–149 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10(4), 902–974 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Minsky, Y.N.: Harmonic maps, length, and energy in Teichmüller space. J. Differ. Geom. 35(1), 151–217 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Minsky, Y.N.: Quasi-projections in Teichmüller space. J. Reine Angew. Math. 473, 121–136 (1996)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Mumford, D.: A remark on Mahler’s compactness theorem. Proc. Am. Math. Soc. 28, 289–294 (1971)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Namazi, H., Pettet, A., Reynolds, P.: Ergodic decompositions for folding and unfolding paths in Outer space. arXiv:1410.8870
  66. 66.
    Rafi, K.: A characterization of short curves of a Teichmüller geodesic. Geom. Topol. 9, 179–202 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Rafi, K.: A combinatorial model for the Teichmüller metric. Geom. Funct. Anal. 17(3), 936–959 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Rafi, K.: Hyperbolicity in Teichmüller space. Geom. Topol. 18(5), 3025–3053 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Ranicki, A.A.: Algebraic \(L\)-Theory and Topological Manifolds. Cambridge Tracts in Mathematics, vol. 102. Cambridge University Press, Cambridge (1992)Google Scholar
  70. 70.
    Rees, M.: An alternative approach to the ergodic theory of measured foliations on surfaces. Ergod. Theory Dyn. Syst. 1(4), 461–488 (1982). 1981MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Watanabe, Y.: Intersection numbers in the curve complex via subsurface projections. J. Topol. Anal. 9(3), 419–439 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Webb, R.C.H.: Uniform bounds for bounded geodesic image theorems. J. Reine Angew. Math. 709, 219–228 (2015)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Wegner, C.: The \(K\)-theoretic Farrell–Jones conjecture for CAT(0)-groups. Proc. Am. Math. Soc. 140(3), 779–793 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Wegner, C.: The Farrell-Jones conjecture for virtually solvable groups. J. Topol. 8(4), 975–1016 (2015)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutWWU MünsterMünsterGermany
  2. 2.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations