Inventiones mathematicae

, Volume 215, Issue 2, pp 609–650 | Cite as

Unicity for representations of the Kauffman bracket skein algebra

  • Charles FrohmanEmail author
  • Joanna Kania-Bartoszynska
  • Thang Lê


This paper resolves the unicity conjecture of Bonahon and Wong for the Kauffman bracket skein algebras of all oriented finite type surfaces at all roots of unity. The proof is a consequence of a general unicity theorem that says that the irreducible representations of a prime affine k-algebra over an algebraically closed field k, that is finitely generated as a module over its center, are generically classified by their central characters. The center of the Kauffman bracket skein algebra of any orientable surface at any root of unity is characterized, and it is proved that the skein algebra is finitely generated as a module over its center. It is shown that for any orientable surface the center of the skein algebra at any root of unity is the coordinate ring of an affine algebraic variety.


  1. 1.
    Andersen, J.E., Kashaev, R.: A TQFT from quantum Teichmüller theory. Commun. Math. Phys. 330(3), 887–934 (2014)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baseilhac, S., Benedetti, R.: Quantum hyperbolic geometry. Algebr. Geom. Topol. 7, 845–917 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonahon, F., Liu, Xiaobo: Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geom. Topol. 11, 889–937 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fock, V.V., Chekhov, L.O.: Quantum Teichmüller spaces. Teoret. Mat. Fiz. 120(3), 511–528 (1999); translation in Theoret. Math. Phys. 120(3), 1245–1259 (Russian)Google Scholar
  5. 5.
    Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in SL2(C). Geom. Topol. 15(3), 1569–1615 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonahon, F., Wong, Helen: Representations of the Kauffman skein algebra I: invariants and miraculous cancellations. Invent. Math. 204, 195–243 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonahon, F., Wong, H.: Representations of the Kauffman Bracket Skein Algebra II: Punctured Surfaces. arXiv:1206.1639
  8. 8.
    Bonahon, F., Wong, H.: Representations of the Kauffman Bracket Skein Algebra III: Closed Surfaces and Naturality. arXiv:1505.01522
  9. 9.
    van Oystaeyen, F.M.J., Verschoren, A.H.M.J.: Non-commutative Algebraic Geometry: An Introduction. Lecture Notes in Mathematics, vol. 881. Springer, Berlin (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969)zbMATHGoogle Scholar
  11. 11.
    Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics CRM Barcelona. Birkhuser, Basel (2002)CrossRefGoogle Scholar
  12. 12.
    Takenov, N.: Representations of the Kauffamn Skein Algebra of Small Surfaces. Preprint arXiv:1504.04573 (2015)
  13. 13.
    Artin, M.: Non commutative Rings, Class Notes, Math 251 Fall (1999).
  14. 14.
    Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. With the Cooperation of L. W. Small. Revised Edition. Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence (2001). (ISBN: 0-8218-2169-5) zbMATHGoogle Scholar
  16. 16.
    Bresar, M.: Introduction to Non commutative Algebra. Springer, Berlin (2014)zbMATHGoogle Scholar
  17. 17.
    Rowen, L.H.: Ring Theory, Vol. II Pure and Applied Mathematics, 128. Academic Press Inc., Boston (1988). (ISBN: 0-12-599842-2) Google Scholar
  18. 18.
    Przytycki, J.H., Sikora, A.S.: On skein algebras and \(Sl_2({\mathbb{C}})\)-character varieties. Topology 39(1), 115–148 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Przytycki, J.: Fundamentals of Kauffman bracket skein modules. Kobe J. Math. 16, 45–66 (1999)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Turaev, V.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. Ecole Norm. Sup. (4) 24(6), 635–704 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bullock, D.: Rings of SL2(C)-characters and the Kauffman bracket skein module. Comment. Math. Helv. 72(4), 521–542 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Barrett, J.W.: Skein spaces and spin structures. Math. Proc. Camb. Philos. Soc. 126, 267–275 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Thurston, D.P.: Positive basis for surface skein algebras. Proc. Natl. Acad. Sci. USA 111(27), 9725–9732 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Marché, J.: The Kauffman skein algebra of a surface at \(\sqrt{-1}\). Math. Ann. 351(2), 347–364 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sikora, A.S.: Skein modules at the 4th roots of unity. J. Knot Theory Ramif. 13(5), 571–585 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Topological quantum field theories derived from the Kauffman bracket. Topology 34(4), 883–927 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lê, T.: On Kauffman bracket skein modules at roots of unity. Algebr. Geom. Topol. 15(2), 1093–1117 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bullock, D.: A finite set of generators for the Kauffman bracket skein algebra. Math. Z. 231, 91–101 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Abdiel, N., Frohman, C.: The localized skein algebra is Frobenius. Algebr. Geom. Topol. 17(6), 3341–3373 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Przytycki, J.H., Sikora, S.: Skein algebras of surfaces. arXiv:1602.07402 [math.GT]
  31. 31.
    Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds. Algorithms and Computation in Mathematics, vol. 9, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  32. 32.
    Lê, T.T.Q.: Quantum Teichmuller spaces and quantum trace map. J. Inst. Math. Jussieu (to appear, 2015). Preprint arXiv:1511.06054
  33. 33.
    Luo, F., Stong, R.: Dehn–Thurston coordinates for curves on surfaces. Commun. Anal. Geom. 12(1), 1–41 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces, Astérisque, vol. 66. Société Mathématique de France, Paris, Séminaire Orsay (1979)Google Scholar
  35. 35.
    McCarthy, J., Papadopoulos, A.: Dynamics on Thurstons sphere of projective measured foliations. Comment. Math. Helv. 64, 133–166 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352(10), 4877–4888 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Abdiel, N., Frohman, C.: Frobenius algebras derived from the Kauffman bracket skein algebra. J. Knot Theory Ramif. 25(4), 1650016 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Shafarevich, I.R.: Basic Algebraic Geometry. 1. Varieties in Projective Space. Translated from the 2007 Third Russian Edition, 3rd edn. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  39. 39.
    Sikora, A.S.: Character varieties. Trans. Am. Math. Soc. 364, 5173–5208 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Heusener, M., Porti, J.: The variety of characters in PSL2(C). Bol. Soc. Mat. Mex. (3) 10, 221–237 (2004). (special issue) zbMATHGoogle Scholar
  41. 41.
    Frohman, C., Kania-Bartoszynska, J.: The Structure of the Kauffman Bracket Skein Algebra at Roots of Unity. arXiv:1607.03424 [math.GT]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Charles Frohman
    • 1
    Email author
  • Joanna Kania-Bartoszynska
    • 2
  • Thang Lê
    • 3
  1. 1.The University of IowaIowa CityUSA
  2. 2.The National Science FoundationAlexandriaUSA
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations