Advertisement

Inventiones mathematicae

, Volume 215, Issue 1, pp 265–310 | Cite as

Krieger’s finite generator theorem for actions of countable groups I

  • Brandon SewardEmail author
Article
  • 97 Downloads

Abstract

For an ergodic p.m.p. action \(G \curvearrowright (X, \mu )\) of a countable group G, we define the Rokhlin entropy \(h^{\mathrm {Rok}}_G(X, \mu )\) to be the infimum of the Shannon entropies of countable generating partitions. It is known that for free ergodic actions of amenable groups this notion coincides with classical Kolmogorov–Sinai entropy. It is thus natural to view Rokhlin entropy as a close analogue to classical entropy. Under this analogy we prove that Krieger’s finite generator theorem holds for all countably infinite groups. Specifically, if \(h^{\mathrm {Rok}}_G(X, \mu ) < \log (k)\) then there exists a generating partition consisting of k sets.

Mathematics Subject Classification

37A15 37A35 

Notes

Acknowledgements

This research was supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 0718128. The author thanks his advisor, Ralf Spatzier, for numerous helpful discussions, Tim Austin for many suggestions to improve the paper, and Miklos Abért and Benjy Weiss for encouraging the author to coin a name for the new invariant studied here. Part of this work was completed while the author attended the Arbeitsgemeinschaft: Sofic Entropy workshop at the Mathematisches Forschungsinstitut Oberwolfach in Germany. The author thanks the MFO for their hospitality and travel support.

References

  1. 1.
    Abramov, L.M., Rohlin, V.A.: Entropy of a skew product of mappings with invariant measure. Vestn. Leningr. Univ. 17(7), 5–13 (1962)MathSciNetGoogle Scholar
  2. 2.
    Alpeev, A.: On Pinsker factors for Rokhlin entropy. J. Math. Sci. 209(6), 826–829 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alpeev, A., Seward, B.: Krieger’s finite generator theorem for actions of countable groups III, preprint. https://arxiv.org/abs/1705.09707
  4. 4.
    Bowen, L.: Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc. 23, 217–245 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bowen, L.: Sofic entropy and amenable groups. Ergod. Theory Dyn. Syst. 32(2), 427–466 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bowen, L.: Every countably infinite group is almost Ornstein. In: Breuillard, E. (ed.) Dynamical Systems and Group Actions, Contemporary Mathematics, vol. 567, pp. 67–78. American Mathematical Society, Providence (2012)Google Scholar
  7. 7.
    Bowen, L.: Zero entropy is generic. Entropy 18(6), 220 (2016)MathSciNetGoogle Scholar
  8. 8.
    Conze, J.P.: Entropie d’un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie verw. Geb. 15, 11–30 (1972)zbMATHGoogle Scholar
  9. 9.
    Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  10. 10.
    Danilenko, A., Park, K.: Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergod. Theory Dyn. Syst. 22, 1715–1745 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Denker, M.: Finite generators for ergodic, measure-preserving transformations. Probab. Theory Relat. Fields 29(1), 45–55 (1974)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Downarowicz, T.: Entropy in Dynamical Systems. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  13. 13.
    Gaboriau, D., Seward, B.: Cost, \(\ell ^2\)-Betti numbers, and the sofic entropy of some algebraic actions, preprint. http://arxiv.org/abs/1509.02482
  14. 14.
    Gao, S., Jackson, S., Seward, B.: A coloring property for countable groups. Math. Proc. Camb. Philos. Soc. 147(3), 579–592 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gao, S., Jackson, S., Seward, B.: Group colorings and Bernoulli subflows. Mem. Am. Math. Soc. 241(1141), 1–241 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Glasner, E.: Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101, p. xii+384. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  17. 17.
    Grillenberger, C., Krengel, U.: On marginal distributions and isomorphisms of stationary processes. Math. Z. 149(2), 131–154 (1976)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Katznelson, Y., Weiss, B.: Commuting measure preserving transformations. Isr. J. Math. 12, 161–173 (1972)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kechris, A.: Classical Descriptive Set Theory. Springer, New York (1995)zbMATHGoogle Scholar
  20. 20.
    Kechris, A., Solecki, S., Todorcevic, S.: Borel chromatic numbers. Adv. Math. 141, 1–44 (1999)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kerr, D., Li, H.: Entropy and the variational principle for actions of sofic groups. Invent. Math. 186, 501–558 (2011)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kerr, D., Li, H.: Soficity, amenability, and dynamical entropy. Am. J. Math. 135, 721–761 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kerr, D., Li, H.: Bernoulli actions and infinite entropy. Groups Geom. Dyn. 5, 663–672 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kifer, Y., Weiss, B.: Generating partitions for random transformations. Ergod. Theory Dyn. Syst. 22, 1813–1830 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Krieger, W.: On entropy and generators of measure-preserving transformations. Trans. Am. Math. Soc. 149, 453–464 (1970)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ornstein, D.: Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4, 337–348 (1970)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Ornstein, D.: Two Bernoulli shifts with infinite entropy are isomorphic. Adv. Math. 5, 339–348 (1970)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ornstein, D., Weiss, B.: Ergodic theory of amenable group actions. I: the Rohlin lemma. Bull. Am. Math. Soc. 2(1), 161–164 (1980)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ornstein, D., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. Journal d’Analyse Mathématique 48, 1–141 (1987)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Neumann, B.H.: Groups covered by permutable subsets. J. Lond. Math. Soc. 29(2), 236–248 (1954)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Rokhlin, V.A.: Lectures on the entropy theory of transformations with invariant measure. Uspehi Mat. Nauk. 22(5), 3–56 (1967)MathSciNetGoogle Scholar
  32. 32.
    Rosenthal, A.: Finite uniform generators for ergodic, finite entropy, free actions of amenable groups. Probab. Theory Relat. Fields 77, 147–166 (1988)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Rudolph, D.J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. Math. 151(2), 1119–1150 (2000)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Seward, B.: Ergodic actions of countable groups and finite generating partitions. Groups Geom. Dyn. 9(3), 793–810 (2015)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Seward, B.: Every action of a non-amenable group is the factor of a small action. J. Mod. Dyn. 8(2), 251–270 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Seward, B.: Krieger’s finite generator theorem for actions of countable groups II, preprint. http://arxiv.org/abs/1501.03367
  37. 37.
    Seward, B.: Weak containment and Rokhlin entropy, preprint. http://arxiv.org/abs/1602.06680
  38. 38.
    Seward, B.: Positive entropy actions of countable groups factor onto Bernoulli shifts, preprint. https://arxiv.org/abs/1804.05269
  39. 39.
    Seward, B., Tucker-Drob, R.D.: Borel structurability on the \(2\)-shift of a countable group. Ann. Pure Appl. Log. 167(1), 1–21 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Stepin, A.M.: Bernoulli shifts on groups. Dokl. Akad. Nauk SSSR 223(2), 300–302 (1975)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Šujan, Š.: Generators for amenable group actions. Mh. Math. 95(1), 67–79 (1983)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations