Inventiones mathematicae

, Volume 215, Issue 1, pp 265–310 | Cite as

Krieger’s finite generator theorem for actions of countable groups I

  • Brandon SewardEmail author


For an ergodic p.m.p. action \(G \curvearrowright (X, \mu )\) of a countable group G, we define the Rokhlin entropy \(h^{\mathrm {Rok}}_G(X, \mu )\) to be the infimum of the Shannon entropies of countable generating partitions. It is known that for free ergodic actions of amenable groups this notion coincides with classical Kolmogorov–Sinai entropy. It is thus natural to view Rokhlin entropy as a close analogue to classical entropy. Under this analogy we prove that Krieger’s finite generator theorem holds for all countably infinite groups. Specifically, if \(h^{\mathrm {Rok}}_G(X, \mu ) < \log (k)\) then there exists a generating partition consisting of k sets.

Mathematics Subject Classification

37A15 37A35 



This research was supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 0718128. The author thanks his advisor, Ralf Spatzier, for numerous helpful discussions, Tim Austin for many suggestions to improve the paper, and Miklos Abért and Benjy Weiss for encouraging the author to coin a name for the new invariant studied here. Part of this work was completed while the author attended the Arbeitsgemeinschaft: Sofic Entropy workshop at the Mathematisches Forschungsinstitut Oberwolfach in Germany. The author thanks the MFO for their hospitality and travel support.


  1. 1.
    Abramov, L.M., Rohlin, V.A.: Entropy of a skew product of mappings with invariant measure. Vestn. Leningr. Univ. 17(7), 5–13 (1962)MathSciNetGoogle Scholar
  2. 2.
    Alpeev, A.: On Pinsker factors for Rokhlin entropy. J. Math. Sci. 209(6), 826–829 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alpeev, A., Seward, B.: Krieger’s finite generator theorem for actions of countable groups III, preprint.
  4. 4.
    Bowen, L.: Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc. 23, 217–245 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bowen, L.: Sofic entropy and amenable groups. Ergod. Theory Dyn. Syst. 32(2), 427–466 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bowen, L.: Every countably infinite group is almost Ornstein. In: Breuillard, E. (ed.) Dynamical Systems and Group Actions, Contemporary Mathematics, vol. 567, pp. 67–78. American Mathematical Society, Providence (2012)CrossRefGoogle Scholar
  7. 7.
    Bowen, L.: Zero entropy is generic. Entropy 18(6), 220 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Conze, J.P.: Entropie d’un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie verw. Geb. 15, 11–30 (1972)zbMATHCrossRefGoogle Scholar
  9. 9.
    Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, New York (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    Danilenko, A., Park, K.: Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergod. Theory Dyn. Syst. 22, 1715–1745 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Denker, M.: Finite generators for ergodic, measure-preserving transformations. Probab. Theory Relat. Fields 29(1), 45–55 (1974)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Downarowicz, T.: Entropy in Dynamical Systems. Cambridge University Press, New York (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Gaboriau, D., Seward, B.: Cost, \(\ell ^2\)-Betti numbers, and the sofic entropy of some algebraic actions, preprint.
  14. 14.
    Gao, S., Jackson, S., Seward, B.: A coloring property for countable groups. Math. Proc. Camb. Philos. Soc. 147(3), 579–592 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gao, S., Jackson, S., Seward, B.: Group colorings and Bernoulli subflows. Mem. Am. Math. Soc. 241(1141), 1–241 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Glasner, E.: Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101, p. xii+384. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  17. 17.
    Grillenberger, C., Krengel, U.: On marginal distributions and isomorphisms of stationary processes. Math. Z. 149(2), 131–154 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Katznelson, Y., Weiss, B.: Commuting measure preserving transformations. Isr. J. Math. 12, 161–173 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kechris, A.: Classical Descriptive Set Theory. Springer, New York (1995)zbMATHCrossRefGoogle Scholar
  20. 20.
    Kechris, A., Solecki, S., Todorcevic, S.: Borel chromatic numbers. Adv. Math. 141, 1–44 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kerr, D., Li, H.: Entropy and the variational principle for actions of sofic groups. Invent. Math. 186, 501–558 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kerr, D., Li, H.: Soficity, amenability, and dynamical entropy. Am. J. Math. 135, 721–761 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kerr, D., Li, H.: Bernoulli actions and infinite entropy. Groups Geom. Dyn. 5, 663–672 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kifer, Y., Weiss, B.: Generating partitions for random transformations. Ergod. Theory Dyn. Syst. 22, 1813–1830 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Krieger, W.: On entropy and generators of measure-preserving transformations. Trans. Am. Math. Soc. 149, 453–464 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ornstein, D.: Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4, 337–348 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ornstein, D.: Two Bernoulli shifts with infinite entropy are isomorphic. Adv. Math. 5, 339–348 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ornstein, D., Weiss, B.: Ergodic theory of amenable group actions. I: the Rohlin lemma. Bull. Am. Math. Soc. 2(1), 161–164 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ornstein, D., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. Journal d’Analyse Mathématique 48, 1–141 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Neumann, B.H.: Groups covered by permutable subsets. J. Lond. Math. Soc. 29(2), 236–248 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Rokhlin, V.A.: Lectures on the entropy theory of transformations with invariant measure. Uspehi Mat. Nauk. 22(5), 3–56 (1967)MathSciNetGoogle Scholar
  32. 32.
    Rosenthal, A.: Finite uniform generators for ergodic, finite entropy, free actions of amenable groups. Probab. Theory Relat. Fields 77, 147–166 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Rudolph, D.J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. Math. 151(2), 1119–1150 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Seward, B.: Ergodic actions of countable groups and finite generating partitions. Groups Geom. Dyn. 9(3), 793–810 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Seward, B.: Every action of a non-amenable group is the factor of a small action. J. Mod. Dyn. 8(2), 251–270 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Seward, B.: Krieger’s finite generator theorem for actions of countable groups II, preprint.
  37. 37.
    Seward, B.: Weak containment and Rokhlin entropy, preprint.
  38. 38.
    Seward, B.: Positive entropy actions of countable groups factor onto Bernoulli shifts, preprint.
  39. 39.
    Seward, B., Tucker-Drob, R.D.: Borel structurability on the \(2\)-shift of a countable group. Ann. Pure Appl. Log. 167(1), 1–21 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Stepin, A.M.: Bernoulli shifts on groups. Dokl. Akad. Nauk SSSR 223(2), 300–302 (1975)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Šujan, Š.: Generators for amenable group actions. Mh. Math. 95(1), 67–79 (1983)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations