Advertisement

Inventiones mathematicae

, Volume 214, Issue 1, pp 171–287 | Cite as

Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid

  • Olivier Glass
  • Alexandre Munnier
  • Franck Sueur
Article

Abstract

The point vortex system is usually considered as an idealized model where the vorticity of an ideal incompressible two-dimensional fluid is concentrated in a finite number of moving points. In the case of a single vortex in an otherwise irrotational ideal fluid occupying a bounded and simply-connected two-dimensional domain the motion is given by the so-called Kirchhoff–Routh velocity which depends only on the domain. The main result of this paper establishes that this dynamics can also be obtained as the limit of the motion of a rigid body immersed in such a fluid when the body shrinks to a massless point particle with fixed circulation. The rigid body is assumed to be only accelerated by the force exerted by the fluid pressure on its boundary, the fluid velocity and pressure being given by the incompressible Euler equations, with zero vorticity. The circulation of the fluid velocity around the particle is conserved as time proceeds according to Kelvin’s theorem and gives the strength of the limit point vortex. We also prove that in the different regime where the body shrinks with a fixed mass the limit dynamics is governed by a second-order differential equation involving a Kutta–Joukowski-type lift force. To prove these results, in a first step we reformulate the dynamics of the body in order to make more explicit different kind of interactions with the fluid. Precisely we establish that the Newton–Euler equations of translational and rotational dynamics of the body can be seen as a 3-dimensional ODE with coefficients solving an auxiliary problem for the fluid. When the circulation around the body is zero, this equation is a geodesic equation for a metric associated with the well-known “added inertia” phenomenon; with a nonzero circulation, an additional term similar to the Lorentz force of electromagnetism appears. Then, in the zero-radius limit, surprising relations between leading and subprincipal orders of various terms and modulation variables show up and allow us to establish a normal form with a gyroscopic structure. This leads to uniform estimates on the body’s dynamics thanks to a modulated energy, and therefore allows us to describe the transition of the dynamics in the limit.

List of symbols

B(q)

Magnetic-type field acting on the solid

\(C^{{{\mathcal {S}}_0}}\)

Value of \(\psi ^{{{\mathcal {S}}_0}}_{{ -1}}\) on \(\partial \mathcal S_0\)

\(\mathrm{d}s\)

Arc length

\(e_1, e_2\)

Unit vectors of the canonical basis

E(q)

Electric-type field acting on the solid

\(\mathcal {E} (q,p)\)

Total energy

\(\mathcal {E}_{\varepsilon } (q,p)\)

Total energy of the shrinking solid

\(\mathcal F_0\)

Domain initially occupied by the fluid

\(\mathcal F(q)\)

Fluid domain associated with the solid position q

F(qp)

Total force acting on the solid

\(F^{{{\mathcal {S}}_0}}_{\vartheta } \)

Force term when \(\varOmega = \mathbb {R}^{2}\)

G

Newtonian potential

h

Position of the center of mass

\(I_\varepsilon \)

Diagonal matrix \(\mathrm{diag}(\varepsilon ,1,1)\)

\(\mathcal {J}\)

Solid’s moment of inertia

\(\mathcal {J}_{\varepsilon }\)

Moment of inertia of the shrinking solid

\(K_{j}(q,\cdot )\)

Normal trace of elementary rigid velocities

\(K_{j,\varepsilon } (q,\cdot )\)

Normal trace of elementary rigid velocities on \(\partial \mathcal S_\varepsilon (q)\)

m

Solid’s mass

\(m_\varepsilon \)

Mass of the shrinking solid

\(M_{g}\)

Genuine solid inertia

\(M_a\)

Added inertia

M

Total inertia of the solid

\(M^{{{\mathcal {S}}_0}}_{a}\)

Added inertia of the solid when \( \varOmega = \mathbb {R}^{2}\)

\(M^{{{\mathcal {S}}_0}}_{{a},\vartheta }\)

Conjugate matrix of \(M_{a}^{{{\mathcal {S}}_0}}\) by the rotation matrix of angle \(\vartheta \)

\(M^{{{\mathcal {S}}_0}}_{{a},\varepsilon }\)

Added inertia of \({\mathcal S}_{0,\varepsilon }\) when \(\varOmega =\mathbb {R}^{2}\)

\({M}_\vartheta (\varepsilon )\)

Rescaled total inertia

n

Normal vector

\({p}_\varepsilon \)

Solid velocity with rescaled angular velocity

\(P_a\)

Added translation impulse

\(P^{{\mathcal {S}}_0}_{a, \vartheta } \)

Translation impulses when \(\varOmega = \mathbb {R}^{2}\)

\(P_{{ 0}} (q, X) \)

Harmonic polynomial extending \(\psi ^{{{\mathcal {S}}_0}}_{{ 0}} (q, \cdot ) \) in \(\mathcal S_0\)

\(P_{{ 1}} (q, X) \)

Harmonic polynomial extending \(\psi ^{{{\mathcal {S}}_0}}_{{ 1}} (q, \cdot ) \) in \(\mathcal S_0\)

q

Body position

\(q_\varepsilon \)

Position of the shrinking solid

\(\mathcal Q\)

Set of body positions without collision

\(\mathfrak Q\)

Bundle of shrinking body positions without collision

\(\mathfrak Q^{\delta }\)

Bundle of shrinking body positions at distance \(\delta \) from the boundary

\(\mathfrak Q_{\delta ,\varepsilon _{0}}\)

Bundle of shrinking body positions at distance \(\delta \) from the boundary with \(\varepsilon < \varepsilon _{0}\)

\(R(\vartheta )\)

\(2\times 2\) rotation matrix of angle \(\vartheta \)

\(\mathcal {R}(\vartheta )\)

\(3\times 3\) rotation matrix of angle \(\vartheta \)

\(\mathcal S_0\)

Domain initially occupied by the solid

\(\mathcal S(q)\)

Solid domain associated with the solid position q

\(\mathcal S_{0,\varepsilon }\)

Initial position of the shrinking solid

\(\mathcal S_{\varepsilon }(q)\)

Position of the shrinking solid

u

Fluid velocity

\(u^\varOmega \)

Routh’ velocity

\(u_c\)

Corrector velocity

U(q)

Potential energy

\(\gamma \)

Circulation

\(\varGamma \)

Christoffel symbols

\(\varGamma ^{\mathrm{rot}} \)

Christoffel tensor related to the solid rotation

\(\varGamma ^{\partial \varOmega } \)

Christoffel tensor omitting the solid rotation

\(\varGamma ^{{{\mathcal {S}}_0}}_{\vartheta }\)

Christoffel symbols when \(\varOmega = \mathbb {R}^{2}\)

\(\varepsilon \)

Typical size of the solid

\(\zeta \)

Conformal center of \(\mathcal S_0\)

\(\zeta _\vartheta \)

Conformal center of \(\mathcal S_0\) rotated of \(\vartheta \)

\(\vartheta \)

Rotation angle of the solid

\(\xi _{j}\)

Elementary rigid velocities

\(\varPi \)

Fluid pressure

\(\rho _a\)

Added angular impulse

\(\tau \)

Tangential vector

\(\varphi _j(q,\cdot )\) (\(j=1,2,3\))

Kirchhoff’s potentials

\(\varvec{\varphi }(q,\cdot )\)

Vector containing the three Kirchhoff potentials

\(\varphi ^{{{\mathcal {S}}_0}}_{j}\) (\(j=1,2,3\))

Kirchhoff’s potentials when \( \varOmega = \mathbb {R}^{2}\)

\(\varvec{\varphi }^{{\mathcal {S}}_0}\)

Vector containing the three Kirchhoff potentials when \( \varOmega = \mathbb {R}^{2}\)

\(\varphi _{j,\varepsilon }(q,\cdot )\) (\(j=1,2,3\))

Kirchhoff’s potentials of the shrinking body

\(\varvec{{\varphi }}_\varepsilon (q,\cdot )\)

Vector containing the three Kirchhoff potentials

\(\overline{\varphi }_{j,\varepsilon } (q,\cdot )\)

Functions harmonically conjugated to the Kirchhoff potentials \({\varphi }_{j,\varepsilon }(q,\cdot )\), up to a rotation

\(\overline{\varphi }^{{{\mathcal {S}}_0}}_{j} \)

Functions harmonically conjugated to the Kirchhoff potentials \({\varphi }^{{{\mathcal {S}}_0}}_{j} \) when \(\varOmega = \mathbb {R}^2\)

\(\psi \)

Circulatory part of the stream function

\(\psi ^\varOmega \)

Routh’ stream function

\(\psi _c\)

Corrector stream function

\(\psi _{\varepsilon }(q,\cdot )\)

Circulatory part of the stream function of the shrinking solid

\(\psi ^{{{\mathcal {S}}_0}}_{k} (q, \cdot ) \)

kth-order profile, defined in \(\mathbb {R}^{2} \setminus \mathcal S_0\)

\(\psi ^{\varOmega }_{k} (q, \cdot ) \)

kth-order profile, defined in \(\varOmega \)

\(\varOmega \)

Fixed domain occupied by the whole system

\(\varOmega _{\delta }\)

Set of points at distance \(\delta \) from the boundary

Notes

Acknowledgements

The authors thank the Agence Nationale de la Recherche, Project IFSMACS, Grant ANR-15-CE40-0010 for a partial financial support. The first and third authors were also partially supported by the Agence Nationale de la Recherche, Project DYFICOLTI, Grant ANR-13-BS01-0003-01, the second author by the Agence Nationale de la Recherche, Project OPTIFORM, Grant ANR-12-BS01-0007-04 and the third author by the Agence Nationale de la Recherche, Project BORDS, Grant ANR-16-CE40-0027-01. The third author was also partially supported by the Emergences Project “Instabilities in Hydrodynamics” funded by the Mairie de Paris and the Fondation Sciences Mathématiques de Paris, the Conseil Régional d’Aquitaine, grant 2015.1047.CP, by the H2020-MSCA-ITN-2017 program, Project ConFlex, Grant ETN-765579 and the Fondation Simone et Cino Del Duca.

References

  1. 1.
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. [Dynamical systems. III]. Translated from the Russian original by E. Khukhro, vol. 3, 3rd edn. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2006)Google Scholar
  2. 2.
    Berkowitz, J., Gardner, C.S.: On the asymptotic series expansion of the motion of a charged particle in slowly varying fields. Commun. Pure Appl. Math. 12, 501–512 (1959)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonnaillie-Noël, V., Dambrine, M., Tordeux, S., Vial, G.: Interactions between moderately close inclusions for the Laplace equation. M3AS: Math. Models Methods Appl. Sci. 19(10), 1853–1882 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brenier, Y.: Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25(3–4), 737–754 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cardone, G., Nazarov, S.A., Sokolowski, J.: Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary. Asymptot. Anal. 62, 41–88 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chambrion, T., Munnier, A.: Generic controllability of 3d swimmers in a perfect fluid. SIAM J. Control Optim. 50(5), 2814–2835 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  8. 8.
    Friedrichs, K.O.: Special Topics in Fluid Dynamics. Gordon and Breach, New York (1966)zbMATHGoogle Scholar
  9. 9.
    Gallay, T.: Interaction of vortices in weakly viscous planar flows. Arch. Ration. Mech. Anal. 200(2), 445–490 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Glass, O., Kolumbán, J., Sueur, F.: External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid. arXiv:1707.05093 (2017)
  11. 11.
    Glass, O., Lacave, C., Sueur, F.: On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Bull. Soc. Math. France 142(3), 489–536 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Glass, O., Lacave, C., Sueur, F.: On the motion of a small light body immersed in a two dimensional incompressible perfect fluid. Commun. Math. Phys. 341(3), 1015–1065 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Glass, O., Sueur, F.: The movement of a solid in an incompressible perfect fluid as a geodesic flow. Proc. Am. Math. Soc. 140(6), 2155–2168 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Glass, O., Sueur, F.: Uniqueness results for weak solutions of two-dimensional fluid–solid systems. Arch. Ration. Mech. Anal. 218(2), 907–944 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Glass, O., Sueur, F.: On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM J. Math. Anal. 44(5), 3101–3126 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Crelles J. 55, 25 (1858). Translation in: On the integral of the hydrodynamical equations which express vortex motion. Philos. Mag. 33, 485–513 (1867)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques and Applications, vol. 48. Springer, Berlin (2005)CrossRefGoogle Scholar
  18. 18.
    Houot, J., Munnier, A.: On the motion and collisions of rigid bodies in an ideal fluid. Asymptot. Anal. 56(3–4), 125–158 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Iftimie, D., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Differ. Equ. 28(1–2), 349–379 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translated from the Russian by V. Minachin. Translations of Mathematical Monographs, vol. 102. American Mathematical Society, Providence (1992)Google Scholar
  21. 21.
    Kelvin, W.: Thomson, Lord \(\sim \). Mathematical and Physical Papers. Cambridge University Press, Cambridge (1910)Google Scholar
  22. 22.
    Kirchhoff, G.: Vorlesungen über mathematische Physik, Mechanik. Teuber, Leipzig (1876)zbMATHGoogle Scholar
  23. 23.
    Lamb, H.: Hydrodynamics. Reprint of the 1932, 6th edn. Cambridge University Press, Cambridge (1993)Google Scholar
  24. 24.
    Lin, C.C.: On the motion of vortices in two dimensions I. Existence of the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. U.S.A. 27, 570–575 (1941)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lin, C.C.: On the motion of vortices in two dimensions II. Some further investigations on the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. U.S.A. 27, 575–577 (1941)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lopes, Filho M.C.: Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit. SIAM J. Math. Anal. 39(2), 422–436 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, vol. 96. Springer, New York (1994)CrossRefGoogle Scholar
  28. 28.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  29. 29.
    Maz’ya, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vol. I. Translated from the German by G. Heinig and C. Posthoff. Operator Theory: Advances and Applications, vol. 111. Birkhäuser Verlag, Basel (2000)Google Scholar
  30. 30.
    Milne-Thomson, L.M.: Theoretical Hydrodynamics, 4th edn. The Macmillan Co., New York (1960)zbMATHGoogle Scholar
  31. 31.
    Moussa, A., Sueur, F.: A 2d spray model with gyroscopic effects. Asymptot. Anal. 81(1), 53–91 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Munnier, A.: On the self-displacement of deformable bodies in a potential fluid flow. Math. Models Methods Appl. Sci. 18(11), 1945–1981 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Munnier, A.: Locomotion of deformable bodies in an ideal fluid: Newtonian versus Lagrangian formalisms. J. Nonlinear Sci. 19, 665–715 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Munnier, A., Ramdani, K.: Asymptotic analysis of a Neumann problem in a domain with cusp. Application to the collision problem of rigid bodies in a perfect fluid. SIAM J. Math. Anal. 47(6), 4360–4403 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Newton, P.K.: The \(N\)-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences Series, vol. 145. Springer, New York (2001)CrossRefGoogle Scholar
  36. 36.
    Poincaré, H.: Théorie des tourbillons. George Carré, Paris (1893)zbMATHGoogle Scholar
  37. 37.
    Pommerenke, C.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbücher, Band XXV. Vandenhoeck and Ruprecht, Göttingen (1975)Google Scholar
  38. 38.
    Reynolds, O.: Papers on Mechanical and Physical Subjects, the Sub-Mechanics of the Universe, vol. 3. Cambridge University Press, Cambridge (1903)Google Scholar
  39. 39.
    Routh, E.J.: Some applications of conjugate functions. Proc. Lond. Math. Soc. 12, 73–89 (1881)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)CrossRefGoogle Scholar
  41. 41.
    Sueur, F.: Motion of a particle immersed in a two dimensional incompressible perfect fluid and point vortex dynamics. In: Particles in flows, pp. 139–216. Birkhäuser, Cham (2017)CrossRefGoogle Scholar
  42. 42.
    Turkington, B.: On the evolution of a concentrated vortex in an ideal fluid. Arch. Ration. Mech. Anal. 97(1), 75–87 (1987)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Vankerschaver, J., Kanso, E., Marsden, J.E.: The geometry and dynamics of interacting rigid bodies and point vortices. J. Geom. Mech. 1(2), 223–266 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEREMADE, UMR CNRS 7534Université Paris-Dauphine, PSL Research UniversityParis Cedex 16France
  2. 2.Université de Lorraine, CNRS, InriaIECLNancyFrance
  3. 3.Institut de Mathématiques de Bordeaux, UMR CNRS 5251Université de BordeauxTalence CedexFrance

Personalised recommendations