# On the nature of the generating series of walks in the quarter plane

Article

First Online:

- 257 Downloads
- 1 Citations

## Abstract

In the present paper, we introduce a new approach, relying on the Galois theory of difference equations, to study the nature of the generating series of walks in the quarter plane. Using this approach, we are not only able to recover many of the recent results about these series, but also to go beyond them. For instance, we give for the first time hypertranscendency results, i.e., we prove that certain of these generating series do not satisfy any nontrivial nonlinear algebraic differential equation with rational function coefficients.

## Mathematics Subject Classification

05A15 30D05 39A06## References

- 1.Bernardi, O., Bousquet-Mélou, M., Raschel, K.: Counting quadrant walks via Tutte’s invariant method (extended abstract), to appear in Proceedings of FPSAC 2015, Discrete Mathematics and Theoretical Computer Science (2016)Google Scholar
- 2.Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. In: Algorithmic Probability and Combinatorics, Contemporary Mathematics, vol. 520, pp. 1–39. American Mathematical Society, Providence (2010)Google Scholar
- 3.Bostan, A., Raschel, K., Salvy, B.: Non-D-finite excursions in the quarter plane. J. Comb. Theory Ser. A
**121**, 45–63 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 4.Bostan, A., van Hoeij, M., Kauers, M.: The complete generating function for Gessel walks is algebraic. Proc. Am. Math. Soc.
**138**(9), 3063–3078 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry. In: Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005)Google Scholar
- 6.Chen, S., Singer, M.F.: Residues and telescopers for bivariate rational functions. Adv. Appl. Math.
**49**(2), 111–133 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Dreyfus, T., Hardouin, C., Roques, J.: Hypertranscendance of solutions of Mahler equations. To appear in J. Eur. Math. SocGoogle Scholar
- 8.Duistermaat, J.: Discrete Integrable Systems: Qrt Maps and Elliptic Surfaces, Springer Monographs in Mathematics, vol. 304. Springer, New York (2010)zbMATHGoogle Scholar
- 9.Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random walks in the quarter-plane: algebraic methods, boundary value problems and applications. In: Applications of Mathematics, vol. 40. Springer, New York (1999)Google Scholar
- 10.Fayolle, G., Raschel, K.: On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-plane. Markov Process. Relat. Fields
**16**(3), 485–496 (2010)MathSciNetzbMATHGoogle Scholar - 11.Hardouin, C.: Hypertranscendance des systèmes aux différences diagonaux. Compos. Math.
**144**(3), 565–581 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Hardouin, C.: Galoisian approach to differential transcendence. In: Galois Theories of Linear Difference Equations: An Introduction, Mathematical Surveys and Monographs, vol. 211, pp. 43–102. American Mathematical Society, Providence (2016)Google Scholar
- 13.Hess, F.: Computing Riemann–Roch spaces in algebraic function fields and related topics. J. Symb. Comput.
**33**(4), 425–445 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 14.Hardouin, C., Singer, M.F.: Differential Galois theory of linear difference equations. Math. Ann.
**342**(2), 333–377 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 15.Hardouin, C., Sauloy, J., Singer, M.F.: Galois Theories of Linear Difference Equations: An Introduction, Mathematical Surveys and Monographs, vol. 211. American Mathematical Society, Providence, RI, 2016, Papers from the courses held at the CIMPA Research School in Santa Marta, July 23–August 1 (2012)Google Scholar
- 16.Jordan, C.: Calculus of finite differences, 3rd edn. Introduction by Harry C. Carver. Chelsea Publishing Co., New York (1965)Google Scholar
- 17.Kurkova, I., Raschel, K.: On the functions counting walks with small steps in the quarter plane. Publ. Math. Inst. Hautes Études Sci.
**116**, 69–114 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 18.Kauers, M., Yatchak, R.: Walks in the quarter plane with multiple steps. In: Proceedings of FPSAC 2015, Discrete Mathematics and Theoretical Computer Science Proceedings, Association of Discrete Mathematics and Theoretical Computer Science, Nancy, pp. 25–36 (2015)Google Scholar
- 19.Masser, D.W.: Linear Relations on Algebraic Groups, New Advances in Transcendence Theory (Durham, 1986), pp. 248–262. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
- 20.Melczer, S., Mishna, M.: Singularity analysis via the iterated kernel method. Comb. Probab. Comput.
**23**(5), 861–888 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 21.Mishna, M., Rechnitzer, A.: Two non-holonomic lattice walks in the quarter plane. Theor. Comput. Sci.
**410**(38–40), 3616–3630 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 22.Raschel, K.: Counting walks in a quadrant: a unified approach via boundary value problems. J. Eur. Math. Soc.
**14**(3), 749–777 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, New York (2009).
**(English)**Google Scholar - 24.van der Put, M., Singer, M.F.: Galois theory of difference equations. In: Lecture Notes in Mathematics, vol. 1666. Springer, Berlin (1997)Google Scholar

## Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018