# Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras

- 562 Downloads
- 3 Citations

## Abstract

Let *J* be a set of pairs consisting of good \(U'_q(\mathfrak g)\)-modules and invertible elements in the base field \(\mathbb C(q)\). The distribution of poles of normalized R-matrices yields Khovanov–Lauda–Rouquier algebras \(R^J(\beta )\) for each \(\beta \in \mathsf {Q}^+\). We define a functor \(\mathcal F_\beta \) from the category of graded \(R^J(\beta )\)-modules to the category of \(U'_q(\mathfrak g)\)-modules. The functor \(\mathcal F= \bigoplus _{\beta \in \mathsf {Q}^+} \mathcal {F}_\beta \) sends convolution products of finite-dimensional graded \(R^J(\beta )\)-modules to tensor products of finite-dimensional \(U'_q(\mathfrak g)\)-modules. It is exact if \(R^J\) is of finite type *A*, *D*, *E*. If \(V(\varpi _1)\) is the fundamental representation of \(U_q'({\widehat{\mathfrak {sl}}_N})\) of weight \(\varpi _1\) and \(J=\left\{ \bigl (V(\varpi _1), q^{2i} \bigr ) \mid i \in \mathbb Z \right\} \), then \(R^J\) is the Khovanov–Lauda–Rouquier algebra of type \(A_{\infty }\). The corresponding functor \(\mathcal {F}\) sends a finite-dimensional graded \(R^J\)-module to a module in \(\mathcal {C}_J\), where \(\mathcal {C}_J\) is the category of finite-dimensional integrable \(U_q'({\widehat{\mathfrak {sl}}_N})\)-modules *M* such that every composition factor of *M* appears as a composition factor of a tensor product of modules of the form \(V(\varpi _1)_{q^{2s}}\) \((s \in {\mathbb {Z}})\). Focusing on this case, we obtain an abelian rigid graded tensor category \({\mathcal T}_J\) by localizing the category of finite-dimensional graded \(R^J\)-modules. The functor \(\mathcal {F}\) factors through \({\mathcal T}_J\). Moreover, the Grothendieck ring of the category \(\mathcal {C}_J\) is isomorphic to the Grothendieck ring of \({\mathcal T}_J\) at \(q=1\).

## Mathematics Subject Classification

81R50 16G 16T25 17B37## Notes

### Acknowledgements

We would like to express our gratitude to Bernard Leclerc for his kind explanations of his works and many fruitful discussions. The first and the third author gratefully acknowledge the hospitality of RIMS (Kyoto) during their visit in 2011 and 2012.

## References

- 1.Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. RIMS. Kyoto Univ.
**33**, 839–867 (1997)MathSciNetCrossRefzbMATHGoogle Scholar - 2.Ariki, S.: On the decomposition numbers of the Hecke algebra of \(G(M,1, n)\). J. Math. Kyoto Univ.
**36**, 789–808 (1996)MathSciNetCrossRefzbMATHGoogle Scholar - 3.Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \(p\)-adic groups. I. Ann. Sci. École. Norm. Sup.
**10**(4), 441–472 (1977)MathSciNetCrossRefzbMATHGoogle Scholar - 4.Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras. Invent. Math.
**178**, 451–484 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
- 6.Chari, V., Pressley, A.: Quantum affine algebras and affine Hecke algebras. Pac. J. Math.
**174**(2), 295–326 (1996)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Cherednik, I.V.: A new interpretation of Gelfand–Tzetlin bases. Duke Math. J.
**54**, 563–577 (1987)MathSciNetCrossRefzbMATHGoogle Scholar - 8.Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\). Int. J. Mod. Phys. A
**9**(3), 399–417 (1994)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Ginzburg, V., Reshetikhin, N., Vasserot, E.: Quantum groups and flag varieties. A.M.S. Contemp. Math.
**175**, 101–130 (1994)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Hernandez, D.: Algebraic approach to \(q, t\)-characters. Adv. Math.
**187**, 1–52 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 11.Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J.
**154**(2), 265–341 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. doi: 10.1515/crelle-2013-0020
- 13.Jimbo, M.: A \(q\)-analogue of \(U(\mathfrak{gl}_{N+1})\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys.
**11**, 247–252 (1986)MathSciNetCrossRefzbMATHGoogle Scholar - 14.Kac, V.: Infinite Dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
- 15.Kang, S.-J., Kashiwara, M.: Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras. Invent. Math.
**190**, 699–742 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 16.Kang, S.-J., Park, E.: Irreducible modules over Khovanov–Lauda–Rouquier algebras of type \(A_n\) and semistandard tableaux. J. Algebra
**339**, 223–251 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 17.Kashiwara, M.: Crystalizing the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys.
**133**, 249–260 (1990)MathSciNetCrossRefzbMATHGoogle Scholar - 18.Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J.
**63**, 465–516 (1991)MathSciNetCrossRefzbMATHGoogle Scholar - 19.Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J.
**73**, 383–413 (1994)MathSciNetCrossRefzbMATHGoogle Scholar - 20.Kashiwara, M.: On level zero representations of quantum affine algebras. Duke Math. J.
**112**, 117–175 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 21.Kashiwara, M., Schapira, P.: Categories and Sheaves, Grundlehren der mathematischen Wissenschaften 332. Springer, Berlin (2006)Google Scholar
- 22.Kato, S.: Poincaré–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras. Duke Math. J.
**163**(3), 619–663 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory
**13**, 309–347 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 24.Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc.
**363**, 2685–2700 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 25.Kim, M.: Khovanov–Lauda–Rouquier Algebras and R-Matrices, Ph.D. thesis, Seoul National University (2012)Google Scholar
- 26.Kleshchev, A.S., Mathas, A., Ram, A.: Universal graded Specht modules for cyclotomic Hecke algebras. Proc. Lond. Math. Soc. (3)
**105**(6), 1245–1289 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 27.Lascoux, A., Leclerc, B., Thibon, J.-Y.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Commun. Math. Phys.
**181**, 205–263 (1996)MathSciNetCrossRefzbMATHGoogle Scholar - 28.Lauda, A., Vazirani, M.: Crystals from categorified quantum groups. Adv. Math.
**228**, 803–861 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 29.Lusztig, G.: Introduction to Quantum Groups. Birkhöser, Boston (1993)zbMATHGoogle Scholar
- 30.McNamara, P.: Finite dimensional representations of Khovanov–Lauda–Rouquier algebras I: finite type. J. Reine Angew. Math.
**707**, 103–124 (2015)MathSciNetzbMATHGoogle Scholar - 31.Nakajima, H.: Quiver varieties and \(t\)-analogue of \(q\)-characters of quantum affine algebras. Ann. Math.
**160**, 1057–1097 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 32.Popescu, N.: Abelian Categories with Applications to Rings and Modules, L.M.S. Monographs, vol. 3, London Mathematical Society (1973)Google Scholar
- 33.Rouquier, R.: 2-Kac-Moody algebras, arXiv:0812.5023v1
- 34.Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq.
**19**, 359–410 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 35.Varagnolo, M., Vasserot, E.: Perverse sheaves and quantum Grothendieck rings. In: Studies in Memory of Issai Schur, Prog. Math., vol. 210. Birkhäuser, pp. 345–365 (2002)Google Scholar
- 36.Varagnolo, M., Vasserot, E.: Canonical bases and KLR algebras. J. Reine Angew. Math.
**659**, 67–100 (2011)MathSciNetzbMATHGoogle Scholar - 37.Vazirani, M.: Parameterizing Hecke algebra modules: Bernstein–Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs. Tranform. Groups
**7**(3), 267–303 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 38.Zelevinsky, A.V.: Induced representations of reductive \(p\)-adic groups. II. On irreducible representations of \(GL(n)\). Ann. Sci. École. Norm. Sup.
**13**(2), 165–210 (1980)MathSciNetCrossRefzbMATHGoogle Scholar