Inventiones mathematicae

, Volume 211, Issue 1, pp 179–212 | Cite as

Equiangular lines and spherical codes in Euclidean space

  • Igor Balla
  • Felix Dräxler
  • Peter Keevash
  • Benny Sudakov


A family of lines through the origin in Euclidean space is called equiangular if any pair of lines defines the same angle. The problem of estimating the maximum cardinality of such a family in \(\mathbb {R}^n\) was extensively studied for the last 70 years. Motivated by a question of Lemmens and Seidel from 1973, in this paper we prove that for every fixed angle \(\theta \) and sufficiently large \(n\) there are at most \(2n-2\) lines in \(\mathbb {R}^n\) with common angle \(\theta \). Moreover, this bound is achieved if and only if \(\theta = \arccos \frac{1}{3}\). Indeed, we show that for all \(\theta \ne \arccos {\frac{1}{3}}\) and and sufficiently large n, the number of equiangular lines is at most 1.93n. We also show that for any set of k fixed angles, one can find at most \(O(n^k)\) lines in \(\mathbb {R}^n\) having these angles. This bound, conjectured by Bukh, substantially improves the estimate of Delsarte, Goethals and Seidel from 1975. Various extensions of these results to the more general setting of spherical codes will be discussed as well.



We would like to thank Boris Bukh and the referee for useful comments.


  1. 1.
    Alon, N.: Perturbed identity matrices have high rank: proof and applications. Combin. Probab. Comput. 18, 3–15 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barg, A., Yu, W.-H.: New bounds for equiangular lines. Contemp. Math. 625, 111–121 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bellman, R.: Introduction to Matrix Analysis, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1997)MATHGoogle Scholar
  4. 4.
    Blumenthal, L.M.: Theory and Applications of Distance Geometry. Clarendon Press, Oxford (1953)MATHGoogle Scholar
  5. 5.
    Bukh, B.: Bounds on equiangular lines and on related spherical codes. SIAM J. Discrete Math. 30, 549–554 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Caen, D.: Large equiangular sets of lines in Euclidean space. Electron. J. Combin. 7 (Research paper 55) (2000)Google Scholar
  7. 7.
    Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications, New York (1973)MATHGoogle Scholar
  8. 8.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975)MATHGoogle Scholar
  9. 9.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geometriae Dedicata 6, 363–388 (1977)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dvir, Z., Saraf, S., Wigderson, A.: Improved rank bounds for design matrices and a new proof of Kelly’s theorem. Forum Math. Sigma 2, e4 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetMATHGoogle Scholar
  12. 12.
    Greaves, G., Koolen, J.H., Munemasa, A., Szöllősi, F.: Equiangular lines in Euclidean spaces. J. Combin. Theory Ser. A 138, 208–235 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Haantjes, J.: Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde 22, 355–362 (1948)MathSciNetMATHGoogle Scholar
  15. 15.
    Haantjes, J., Seidel, J.J.: The congruence order of the elliptic plane. Indag. Math. 9, 403–405 (1947)MATHGoogle Scholar
  16. 16.
    Heath, R.W., Strohmer, T.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jedwab, J., Wiebe, A.: Large sets of complex and real equiangular lines. J. Combin. Theory Ser. A 134, 98–102 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Koornwinder, T.H.: A note on the absolute bound for systems of lines. Indag. Math. (Proceedings) 79, 152–153 (1976)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lemmens, P.W.H., Seidel, J.J.: Equiangular lines. J. Algebra 24, 494–512 (1973)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    van Lint, J.H., Seidel, J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28, 335–348 (1966)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lovász, L.: Combinatorial Problems and Exercises, 2nd edn. AMS Chelsea Publishing, Rhode Island (2014)MATHGoogle Scholar
  22. 22.
    Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Springer, New York (1986)MATHGoogle Scholar
  23. 23.
    Neumaier, A.: Graph representations, two-distance sets, and equiangular lines. Linear Algebra Appl. 114, 141–156 (1989)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nilli, A.: On the second eigenvalue of a graph. Discrete Math. 91(2), 207–210 (1991)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Rankin, R.A.: The Closest Packing of Spherical Caps in \(n\) Dimensions, vol. 2. Cambridge University Press, Cambridge, pp. 139–144 (1955)Google Scholar
  26. 26.
    Schnirelmann, L.G.: On the additive properties of numbers. Proc. Don Polytech. Inst. Novocherkassk 14, 3–27 (1930)Google Scholar
  27. 27.
    Seidel, J.J.: Strongly regular graphs of \(L_2\)-type and of triangular type. Indag. Math. 29, 188–196 (1967)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Igor Balla
    • 1
  • Felix Dräxler
    • 1
  • Peter Keevash
    • 2
  • Benny Sudakov
    • 1
  1. 1.Department of MathematicsETHZurichSwitzerland
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations