Advertisement

Inventiones mathematicae

, Volume 209, Issue 1, pp 61–158 | Cite as

Quivers with relations for symmetrizable Cartan matrices I: Foundations

  • Christof Geiss
  • Bernard LeclercEmail author
  • Jan Schröer
Article

Abstract

We introduce and study a class of Iwanaga–Gorenstein algebras defined via quivers with relations associated with symmetrizable Cartan matrices. These algebras generalize the path algebras of quivers associated with symmetric Cartan matrices. We also define a corresponding class of generalized preprojective algebras. For these two classes of algebras we obtain generalizations of classical results of Gabriel, Dlab–Ringel, and Gelfand–Ponomarev. In particular, we obtain new representation theoretic realizations of all finite root systems without any assumption on the ground field.

Mathematics Subject Classification

Primary 16G10 16G20 Secondary 16G70 

Notes

Acknowledgements

We thank the CIRM (Luminy) for two weeks of hospitality in July 2013, where this work was initiated. The first author acknowledges financial support from UNAM-PAPIIT Grant IN108114. The third author thanks the SFB/Transregio TR 45 for financial support, and the UNAM for one month of hospitality in March 2014. We thank W. Crawley-Boevey, H. Lenzing and C.M. Ringel for helpful comments.

References

  1. 1.
    Adachi, T., Iyama, O., Reiten, I.: \(\tau \)-tilting theory. Compos. Math. 150(3), 415–452 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auslander, M., Buchweitz, R.: The homological theory of maximal Cohen–Macaulay approximations. Mém. Soc. Math. Fr. (N.S.) 38, 5–37 (1989)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Auslander, M., Platzeck, M., Reiten, I.: Coxeter functors without diagrams. Trans. Am. Math. Soc. 250, 1–46 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Auslander, M., Reiten, I.: Applications to contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auslander, M., Reiten, I., Smalø, S.: Representation theory of Artin algebras. In: Corrected reprint of the 1995 original. Cambridge Studies in Advanced Mathematics, vol. 36, pp. xiv+425. Cambridge University Press, Cambridge (1997)Google Scholar
  6. 6.
    Auslander, M., Smalø, S.: Almost split sequences in subcategories. J. Algebra 69(2), 426–454 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baer, D., Geigle, W., Lenzing, H.: The preprojective algebra of a tame hereditary Artin algebra. Commun. Algebra 15(1–2), 425–457 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Baumann, P., Kamnitzer, J.: Preprojective algebras and MV polytopes. Represent. Theory 16, 152–188 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Baumann, P., Kamnitzer, J., Tingley, P.: Affine Mirković–Vilonen polytopes. Publ. Math. Inst. Hautes Études Sci. 120, 113–205 (2014)Google Scholar
  10. 10.
    Bautista, R., Salmerón, L., Zuazua, R.: Differential tensor algebras and their module categories. In: London Mathematical Society Lecture Note Series, vol. 362, pp. x+452. Cambridge University Press, Cambridge (2009)Google Scholar
  11. 11.
    Bernstein, I.N., Gelfand, I.M.Ponomarev, VA,: Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28, no. 2 (170), 19–33 (1973)Google Scholar
  12. 12.
    Bolten, B.: Spiegelungsfunktoren für präprojektive Algebren. Diploma Thesis, University of Bonn (2010)Google Scholar
  13. 13.
    Bongartz, K., Gabriel, P.: Covering spaces in representation theory. Invent. Math. 65(3), 331–378 (1981/1982)Google Scholar
  14. 14.
    Brenner, S., Butler, M.C.R.: The equivalence of certain functors occurring in the representation theory of Artin algebras and species. J. Lond. Math. Soc. (2) 14(1), 183–187 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Brenner, S., Butler, M.C.R., King, A.D.: Periodic algebras which are almost Koszul. Algebras Represent. Theory 5(4), 331–367 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Buan, A., Marsh, R., Vatne, D.: Cluster structures from 2-Calabi–Yau categories with loops. Math. Z. 265, 951–970 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Buchweitz, R.: Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings (1987) (Unpublished manuscript)Google Scholar
  18. 18.
    Cecotti, S.: The quiver approach to the BPS spectrum of a \(4d\) \(N=2\) gauge theory. String-Math 2012, 3–17, Proc. Sympos. Pure Math., 90, Amer. Math. Soc., Providence, RI (2015)Google Scholar
  19. 19.
    Cecotti, S., Del Zotto, M.: \(4d\) \(N=2\) gauge theories and quivers: the non-simply laced case. J. High Energy Phys. (10), 190 (2012) (front matter + 34 pp)Google Scholar
  20. 20.
    Crawley-Boevey, W.: More lectures on representations of quivers. In: Lecture Notes. http://www1.maths.leeds.ac.uk/~pmtwc/
  21. 21.
    Crawley-Boevey, W.: Rigid integral representations of quivers. In: (English summary) Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc., vol. 18, pp. 155–163, American Mathematical Society , Providence (1996)Google Scholar
  22. 22.
    Crawley-Boevey, W.: Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities. Comment. Math. Helv. 74, 548–574 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Crawley-Boevey, W.: On the exceptional fibres of Kleinian singularities. Am. J. Math. 122(5), 1027–1037 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Crawley-Boevey, W., Shaw, P.: Multiplicative preprojective algebras, middle convolution and the Deligne–Simpson problem. Adv. Math. 201(1), 180–208 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Dlab, V.: Representations of valued graphs. In: Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 73. Presses de l’Université de Montréal, Montreal, Que (1980)Google Scholar
  26. 26.
    Dlab, V., Ringel, C.M.: Representations of graphs and algebras. In: Carleton Mathematical Lecture Notes, No. 8. Department of Mathematics, Carleton University, Ottawa, Ont. pp. iii+86 (1974)Google Scholar
  27. 27.
    Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. In: Memoirs of the American Mathematical Society 6, vol. 173, pp. v+57 (1976)Google Scholar
  28. 28.
    Dlab, V., Ringel, C.M.: The preprojective algebra of a modulated graph. In: Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), vol. 832, pp. 216–231, Lecture Notes in Math. Springer, Berlin (1980)Google Scholar
  29. 29.
    Fan, Z.: Geometric approach to Hall algebra of representations of quivers over local rings. arXiv:1012.5257v4
  30. 30.
    Gabriel, P. Unzerlegbare Darstellungen. I. (German) Math. Manuscr. 6, 71–103 (1972) (correction, ibid. 6 (1972), 309)Google Scholar
  31. 31.
    Gabriel, P.: Indecomposable representations. II. In: Symposia Mathematica, (Convegno di Algebra Commutativa, INDAM, Rome, 1971), vol. XI, pp. 81–104. Academic Press, London (1973)Google Scholar
  32. 32.
    Gabriel, P.: Auslander–Reiten sequences and representation-finite algebras. In: Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, pp. 1–71. Springer, Berlin (1980)Google Scholar
  33. 33.
    Geiß, C., Leclerc, B., Schröer, B.: Quivers with relations for symmetrizable Cartan matrices II: Change of symmetrizers. Int. Math. Res. Not. (IMRN) (accepted) (2015). arXiv:1511.05898
  34. 34.
    Geiß, C., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable Cartan matrices III: Convolution algebras. Represent. Theory (Electronic Journal of the American Mathematical Society) 20, 375–413 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gelfand, I.M., Ponomarev, V.A.: Model algebras and representations of graphs. Funktsional. Anal. i Prilozhen. 13(3), 1–12 (1979)MathSciNetGoogle Scholar
  36. 36.
    Happel, D., Ringel, C.M.: Tilted algebras. Trans. Am. Math. Soc. 274(2), 399–443 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Happel, D., Vossieck, D.: Minimal algebras of infinite representation type with preprojective component. Manuscr. Math. 42(2–3), 221–243 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hernandez, D., Leclerc, B.: A cluster algebra approach to \(q\)-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. (JEMS) 18(5), 1113–1159 (2016)Google Scholar
  39. 39.
    Iwanaga, Y.: On rings with finite self-injective dimension \(\le 1\). Osaka J. Math. 15, 33–46 (1978)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Iwanaga, Y.: On rings with finite self-injective dimension. Commun. Algebra 7(4), 393–414 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ladkani, S.: 2-CY-tilted algebras that are not Jacobian. arXiv:1403.6814
  42. 42.
    Leszczyński, Z., Skowroński, A.: Tame tensor products of algebras. Colloq. Math. 98(1), 125–145 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Li, F.: Modulation and natural valued quiver of an algebra. Pacific J. Math. 256(1), 105–128 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Luo, X., Zhang, P.: Monic representations and Gorenstein-projective modules. Pacific J. Math. 264(1), 163–194 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Orlov, D.: Triangulated categories of singularities and D-branes in Landau–Ginzburg models. Proc. Steklov Inst. Math. 246(3), 227–248 (2004)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ringel, C.M.: Representations of \(K\)-species and bimodules. J. Algebra 41(2), 269–302 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ringel, C.M.: Finite dimensional hereditary algebras of wild representation type. Math. Z. 161, 235–255 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ringel, C.M.: Tame algebras and integral quadratic forms. In: Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)Google Scholar
  49. 49.
    Ringel, C.M. : The preprojective algebra of a quiver. In: Algebras and Modules, II (Geiranger, 1996), CMS Conf. Proc., vol. 24, pp. 467–480. American Mathematical Society, Providence (1998)Google Scholar
  50. 50.
    Ringel, C.M., Schmidmeier, M.: Invariant subspaces of nilpotent linear operators, I. J. Reine Angew. Math. 614, 1–52 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Ringel, C.M., Zhang, P.: Representations of quivers over the algebra of dual numbers. arXiv:1112.1924
  52. 52.
    Schofield, A.: Representations of rings over skew fields. In: London Mathematical Society, Lecture Notes Series, vol. 92, Cambridge University Press, Cambridge (1985)Google Scholar
  53. 53.
    Skowroński, A.: Tame triangular algebras over Nakayama algebra. J. Lond. Math. Soc. (2) 34, 245–264 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Vatne, D.: Endomorphism rings of maximal rigid objects in cluster tubes. Colloq. Math. 123(1), 63–93 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Yamakawa, D.: Quiver varieties with multiplicities, Weyl groups of non-symmetric Kac–Moody algebras, and Painlevé equations. SIGMA 6, Paper 087, 43 pp (2010)Google Scholar
  56. 56.
    Yang, D.: Endomorphism algebras of maximal rigid objects in cluster tubes. Commun. Algebra 40(12), 4347–4371 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christof Geiss
    • 1
  • Bernard Leclerc
    • 2
    • 3
    Email author
  • Jan Schröer
    • 4
  1. 1.Instituto de MatemáticasUniversidad Nacional Autónoma de México Ciudad UniversitariaMexicoMexico
  2. 2.LMNONormandie Univ, UNICAEN, CNRSCaenFrance
  3. 3.Institut Universitaire de FranceParis Cedex 05France
  4. 4.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations