Inventiones mathematicae

, Volume 207, Issue 1, pp 23–113 | Cite as

The circular unitary ensemble and the Riemann zeta function: the microscopic landscape and a new approach to ratios

  • Reda Chhaibi
  • Joseph Najnudel
  • Ashkan NikeghbaliEmail author


We show in this paper that after proper scalings, the characteristic polynomial of a random unitary matrix converges to a random analytic function whose zeros, which are on the real line, form a determinantal point process with sine kernel. Our scaling is performed at the so-called “microscopic” level, that is we consider the characteristic polynomial at points whose distance to 1 has order 1 / n. We prove that the rescaled characteristic polynomial does not even have a moment of order one, hence making the classical techniques of random matrix theory difficult to apply. In order to deal with this issue, we couple all the dimensions n on a single probability space, in such a way that almost sure convergence occurs when n goes to infinity. The strong convergence results in this setup provide us with a new approach to ratios: we are able to solve open problems about the limiting distribution of ratios of characteristic polynomials evaluated at points of the form \(\exp (2 i \pi \alpha /n)\) and related objects (such as the logarithmic derivative). We also explicitly describe the dependence relation for the logarithm of the characteristic polynomial evaluated at several points on the microscopic scale. On the number theory side, inspired by the work by Keating and Snaith, we conjecture some new limit theorems for the value distribution of the Riemann zeta function on the critical line at the level of stochastic processes.



We would like to thank Brad Rodgers for very stimulating discussions and A.N. would also like to thank Alexei Borodin for mentioning the problems on ratios of characteristic polynomials at the microscopic scale.


  1. 1.
    Aizenman, M., Warzel, S.: On the ubiquity of the Cauchy distribution in spectral problems (2013). arXiv:1312.7769
  2. 2.
    Bump, D., Gamburd, A.: On the averages of characteristic polynomials from classical groups. Commun. Math. Phys. 265(1), 227–274 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barhoumi, Y., Hughes, C.-P., Najnudel, J., Nikeghbali, A.: On the number of zeros of linear combinations of indepepndent characteristic polynomials of random unitary matrices. arXiv:1301.5144
  4. 4.
    Bourgade, P., Hughes, C.-P., Nikeghbali, A., Yor, M.: The characteristic polynomial of a random unitary matrix: a probabilistic approach. Duke Math. J. 145(1), 45–69 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bourgade, P., Najnudel, J., Nikeghbali, A.: A unitary extension of virtual permutations. IMRN 2013(18), 4101–4134 (2012)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Borodin, A., Olshanski, G., Strahov, E.: Giambelli compatible point processes. Adv. Appl. Math. 37(2), 209–248 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bourgade, P.: Mesoscopic fluctuations of the zeta zeros. Probab. Theory Related Fields 148(3–4), 479–500 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Borodin, A., Strahov, E.: Averages of charactersitic polynomials in random matrix theory. Commun. Pure Appl. Math. 59(2), 161–253 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Conrey, B., Farmer, D.-W., Zirnbauer, M.-R.: Autocorrelation of ratios of \(L\)-functions. Commun. Number Theory Phys. 2(3), 593–636 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Costin, O., Lebowitz, J.: Gaussian fluctuations in random matrices. Phys. Rev. Lett. 75(1), 69–72 (1995)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Conrey, B., Snaith, N.: Applications of the L-functions ratios conjectures. Proc. Lond. Math. Soc. 94(3), 594–646 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Conrey, B., Snaith, N.: Correlation of eigenvalues and riemann zeros. Commun. Number Theory Phys. 2(3), 477–536 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Conrey, B., Snaith, N.: In support of n-correlation. Commun. Math. Phys. 330(2), 639–653 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Farmer, D.-W., Gonek, S.M., Lee, Y., Lester, S.J.: Mean values of \(\zeta ^{^{\prime }}/\zeta (s)\), correlations of zeros and the distribution of almost primes. Q. J. Math. 64(4), 1057–1089 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fyodorov, Y.-V., Strahov, E.: An exact formula for general spectral correlation function of random Hermitian matrices. J. Phys. A Math. Gen. 36, 3203–3214 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Goldston, D.A., Gonek, S.M., Montgomery, H.L.: Mean values of the logarithmic derivative of the Riemann zeta-function with applications to primes in short intervals. J. Reine Angew. Math. 537, 105–126 (2001)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Hughes, C.-P., Keating, J.-P., O’Connell, N.: On the characteristic polynomial of a random unitary matrix. Commun. Math. Phys. 220, 429–451 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hughes, C.-P.: On the characteristic polynomial of a random unitary matrix and the riemann zeta function. PhD Thesis (2001)Google Scholar
  19. 19.
    Keating, J.-P., Snaith, N.: Random matrix theory and \(\zeta (1/2 + it)\). Commun. Math. Phys. 214, 57–89 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Meckes, E.-S., Meckes, M.-W.: Spectral measures of powers of random matrices. Electron. Commun. Probab. 18(78), 13 (2013)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Maples, K., Najnudel, J., Nikeghbali, A.: Limit operators for circular ensembles (2013). arXiv:1304.3757
  22. 22.
    Montgomery, H.L.: The pair correlation of zeros of the zeta function. In: Analytic number theory (Proc. Sympos. Pure Math., vol. XXIV, St. Louis Univ., St. Louis, MO, 1972), pp. 181–193. Amer. Math. Soc., Providence (1973)Google Scholar
  23. 23.
    Rodgers, B.: Tail bounds for counts of zeros and eigenvalues, and an application to ratios (2015). arXiv:1502.05658
  24. 24.
    Rudnick, Z., Sarnak, P.: Zeros of principal L-functions and random matrix theory. Duke Math. J. 81(2), 269–322 (1996). (a celebration of John F. Nash, Jr.)Google Scholar
  25. 25.
    Strahov., E., Fyodorov, Y.-V.: On universality of correlation functions of characteristic polynomials: Riemann–Hilbert approach. Commun. Math. Phys. 241, 343–382 (2003)Google Scholar
  26. 26.
    Soshnikov, A.: The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28(3), 1353–1370 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30(1), 171–187 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Titchmarsh, E.-C.: The theory of the Riemann zeta-function, 2nd edn. The Clarendon Press, Oxford University Press, New York (1986). (edited and with a preface by D. R. Heath-Brown)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Reda Chhaibi
    • 1
  • Joseph Najnudel
    • 1
  • Ashkan Nikeghbali
    • 2
    Email author
  1. 1.ToulouseFrance
  2. 2.ZurichSwitzerland

Personalised recommendations