Inventiones mathematicae

, Volume 203, Issue 1, pp 179–215 | Cite as

Automorphisms of projective K3 surfaces with minimum entropy

  • Curtis T. McMullen


A Salem number is an algebraic integer \(\lambda > 1\)



I would like to thank E. Bedford and B. Gross for useful conversations related to this work.


  1. 1.
    Barth, W., Peters, C., van de Ven, A.: Compact Complex Surfaces. Springer, Berlin (1984)Google Scholar
  2. 2.
    Beauville, A., et al.: Géométrie des surfaces K3: modules et périodes. Astérisque 126 (1985)Google Scholar
  3. 3.
    Bedford, E., Kim, K.: Periodicities in linear fractional recurrences: degree growth of birational surface maps. Michigan Math. J. 54, 647–670 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bedford, E., Kim, K.: Dynamics of (pseudo) automorphisms of 3-space: periodicity versus positive entropy. Publ. Mat. IHES 58 (2014), 65–119Google Scholar
  5. 5.
    Borel, A., Harish-Chandra.: Arithmetic subgroups of algebraic groups. Ann. Math. 75, 485–535 (1962)Google Scholar
  6. 6.
    Bourbaki, N.: Groupes et algèbres de Lie, Ch. IV–VI. Hermann, Paris (1968); Masson, Paris (1981)Google Scholar
  7. 7.
    Cantat, S.: Dynamique des automorphismes des surfaces projectives complexes. CRAS Paris Sér. I Math. 328, 901–906 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings. Lattices and Groups. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dolgachev, I.: Reflection groups in algebraic geometry. Bull. Am. Math. Soc. 45, 1–60 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions. Astérisque 165 (1988)Google Scholar
  11. 11.
    Dolgachev, I.V.: Mirror symmetry for lattice polarized \(K3\) surfaces. J. Math. Sci. 81, 2599–2630 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. 49, 217–235 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gross, B., McMullen, C.: Automorphisms of even unimodular lattices and unramified Salem numbers. J. Algebra 257, 265–290 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hironaka, E.: The Lehmer polynomial and pretzel links. Can. Math. Bull. 44, 440–451 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)Google Scholar
  16. 16.
    Kondo, S.: Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces. Duke Math. J. 92, 593–603 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kondo, S., Shimada, I.: The automorphism group of a supersingular K3 surface with Artin invariant 1 in characteristic 3. Int. Math. Res. Not., no. 7, pp. 1885–1924 (2014)Google Scholar
  18. 18.
    Kumar, A.: K3 surfaces associated with curves of genus two. Int. Math. Res. Not., Art. ID rnm165 (2008)Google Scholar
  19. 19.
    Lanneau, E., Thiffeault, J.-L.: On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus. Ann. Inst. Fourier 61, 105–144 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lehmer, D.H.: Factorization of certain cyclotomic functions. Ann. Math. 34, 461–479 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    McMullen, C.: Coxeter groups, Salem numbers and the Hilbert metric. Publ. Math. IHES 95, 151–183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    McMullen, C.: Dynamics on K3 surfaces: Salem numbers and Siegel disks. J. Reine Angew. Math. 545, 201–233 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    McMullen, C.: Dynamics on blowups of the projective plane. Publ. Math. IHES 105, 49–89 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    McMullen, C.: K3 surfaces, entropy and glue. J. Reine Angew. Math. 658, 1–25 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    McMullen, C.: Salem number/Coxeter group/K3 surface package. doi: 10.7910/DVN/29211
  26. 26.
    Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, Berlin (1973)Google Scholar
  27. 27.
    Morrison, D.R.: On K3 surfaces with large Picard number. Invent. Math. 75 (1984)Google Scholar
  28. 28.
    Mukai, S.: Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94, 183–221 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nagata, M.: On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33, 271–293 (1961)Google Scholar
  30. 30.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)Google Scholar
  31. 31.
    Nikulin, V.V.: Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38, 71–135 (1980)Google Scholar
  32. 32.
    Nikulin, V.V.: Integral symmetric bilinear forms and its applications. Math. USSR Izv. 14, 103–167 (1980)CrossRefzbMATHGoogle Scholar
  33. 33.
    Oguiso, K.: Salem polynomials and the bimeromorphic automorphism groups of a hyperkähler manifold. In: Selected papers on analysis and differential equations, AMS Translations, vol. 230. Amer. Math. Soc., Providence, pp. 201–227 (2010)Google Scholar
  34. 34.
    Oguiso, K.: The third smallest Salem number in automorphisms of K3 surfaces. In: Algebraic Geometry in East Asia-Seoul 2008, Adv. Stud. Pure Math., vol. 60. Math. Soc. Japan, pp. 331–360 (2010)Google Scholar
  35. 35.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey (1982)Google Scholar
  36. 36.
    Serre, J.P.: A Course in Arithmetic. Springer, Berlin (1973)Google Scholar
  37. 37.
    Silverman, J.: Rational points on K3 surfaces: a new canonical height. Invent. math. 105, 347–373 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Uehara, T.: Rational surface automorphisms with positive entropy (2012, preprint)Google Scholar
  39. 39.
    Wang, L.: Rational points and canonical heights on K3-surfaces in \({{\mathbb{P}}}^1 \times {{\mathbb{P}}}^1 \times {{\mathbb{P}}}^1\). In: Recent Developments in the Inverse Galois Problem. Amer. Math. Soc., Providence, pp. 273–289 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Curtis T. McMullen
    • 1
  1. 1.Mathematics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations