Inventiones mathematicae

, Volume 202, Issue 3, pp 1029–1068 | Cite as

Moments and distribution of central \(L\)-values of quadratic twists of elliptic curves

Article

Abstract

We show that if one can compute a little more than a particular moment for some family of L-functions, then one has upper bounds of the conjectured order of magnitude for all smaller (positive, real) moments and a one-sided central limit theorem holds. We illustrate our method for the family of quadratic twists of an elliptic curve, obtaining sharp upper bounds for all moments below the first. We also establish a one sided central limit theorem supporting a conjecture of Keating and Snaith. Our work leads to a conjecture on the distribution of the order of the Tate-Shafarevich group for rank zero quadratic twists of an elliptic curve, and establishes the upper bound part of this conjecture (assuming the Birch-Swinnerton-Dyer conjecture).

References

  1. 1.
    Chandee, V., Li, X.: The eighth moment of Dirichlet \(L\)-functions. preprint, arXiv:1303.4482. (2013)
  2. 2.
    Coates, J., Li, Y., Tian, Y., Zhai, S.: Quadratic twists of elliptic curves. preprint, arXiv:1312.3884. (2013)
  3. 3.
    Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Integral moments of \(L\)-functions. Proc. London Math. Soc. 91(1):33–104 (2005)Google Scholar
  4. 4.
    Conrey, J.B., Iwaniec, H., Soundararajan, K.: The sixth power moment of Dirichlet \(L\)-functions. Geom. Funct. Anal. 22(5), 1257–1288 (2012)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Conrey, J.B., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Random matrix theory and the Fourier coefficients of half-integral-weight forms. Experiment. Math. 15(1), 67–82 (2006)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Delaunay, Christophe: Moments of the orders of Tate-Shafarevich groups. Int. J. Number. Theory. 1(2), 243–264 (2005)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Delaunay, C.: Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics. In: Ranks of elliptic curves and random matrix theory, vol. 341 of London Math. Soc. Lecture Note Ser., pp. 323–340. Cambridge University Press, Cambridge (2007)Google Scholar
  8. 8.
    Delaunay, C., Watkins, M.: The powers of logarithm for quadratic twists. In Ranks of elliptic curves and random matrix theory, vol. 341 of London Math. Soc. Lecture Note Ser., pp. 189–193. Cambridge Univ. Press, Cambridge (2007)Google Scholar
  9. 9.
    Diaconu, A., Goldfeld, D., Hoffstein, J.: Multiple Dirichlet series and moments of zeta and \(L\)-functions. Compositio. Math. 139(3), 297–360 (2003)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Eckhardt, B., Fishman, S., Keating, J., Agam, O., Main, Jörg, Müller, Kirsten: Approach to ergodicity in quantum wave functions. Phys. Rev. E. 52, 5893–5903 (1995)CrossRefGoogle Scholar
  11. 11.
    Goldfeld, D.: Conjectures on elliptic curves over quadratic fields. In: Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), vol. 751 of Lecture Notes in Math., pp. 108–118. Springer, Berlin (1979)Google Scholar
  12. 12.
    Granville, A., Soundararajan, K.: Sieving and the Erdős-Kac theorem. In: Equidistribution in number theory, an introduction, vol. 237 of NATO Sci. Ser. II Math. Phys. Chem., pp. 15–27. Springer, Dordrecht (2007)Google Scholar
  13. 13.
    Harper, A.J.: Sharp conditional bounds for moments of the Riemann zeta function. Preprint, arXiv:1305.4618. (2013)
  14. 14.
    Heath-Brown, D.R.: Fractional moments of the Riemann zeta function. J. London Math. Soc. 24(1):65–78 (1981)Google Scholar
  15. 15.
    Heath-Brown, D.R.: A mean value estimate for real character sums. Acta. Arith. 72(3), 235–275 (1995)MATHMathSciNetGoogle Scholar
  16. 16.
    Hough, R.D.: The distribution of the logarithm in an orthogonal and a symplectic family of \(l\)-functions. Forum. Math. 26, 523–546 (2014)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hughes, C.P., Young, M.P.: The twisted fourth moment of the Riemann zeta function. J. Reine Angew. Math. 641:203–236 (2010)Google Scholar
  18. 18.
    Iwaniec, H.: On the order of vanishing of modular \(L\)-functions at the critical point. Sém. Théor. Nombres Bordeaux. 2(2):365–376 (1990)Google Scholar
  19. 19.
    Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)Google Scholar
  20. 20.
    Katz, N.M., Sarnak, P.: Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, vol. 45. American Mathematical Society, Providence (1999)Google Scholar
  21. 21.
    Keating, J.P., Snaith, N.C.: Random matrix theory and \(L\)-functions at \(s=1/2\). Comm. Math. Phys. 214(1), 91–110 (2000)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2+it)\). Comm. Math. Phys. 214(1), 57–89 (2000)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Luo, W., Sarnak, P.: Quantum variance for Hecke eigenforms. Ann. Sci. École Norm. Sup. 37(5):769–799 (2004)Google Scholar
  24. 24.
    Miller, R.L.: Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one. LMS. J. Comput. Math. 14, 327–350 (2011)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Radziwiłł, M., Soundararajan, K.: Continuous lower bounds for moments of zeta and \(L\)-functions. Mathematika. 59(1), 119–128 (2013)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Karl, R.: Fudge factors in the Birch and Swinnerton-Dyer conjecture. In: Ranks of elliptic curves and random matrix theory, vol. 341 of London Math. Soc. Lecture Note Ser., pp. 233–236. Cambridge Univ. Press, Cambridge (2007)Google Scholar
  27. 27.
    Rudnick, Z., Soundararajan, K.: Lower bounds for moments of \(L\)-functions. Proc. Natl. Acad. Sci. USA. 102(19), 6837–6838 (2005)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Rudnick, Z., Soundararajan, K.: Lower bounds for moments of \(L\)-functions: symplectic and orthogonal examples. In: Multiple Dirichlet series, automorphic forms, and analytic number theory, volume 75 of Proc. Sympos. Pure Math., pp. 293–303. Amer. Math. Soc., Providence (2006)Google Scholar
  29. 29.
    Sarnak, P., Zhao, P.: The quantum variance of the modular surface. arXiv:1303.6972. (2013)
  30. 30.
    Soundararajan, K.: Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac{1}{2}\). Ann. of Math. 152(2):447–488 (2000)Google Scholar
  31. 31.
    Soundararajan, K., Young, M.P.: The second moment of quadratic twists of modular \(L\)-functions. J. Eur. Math. Soc. (JEMS). 12(5):1097–1116 (2010)Google Scholar
  32. 32.
    Soundararajan, K.: Moments of the Riemann zeta function. Ann. of Math. 170(2):981–993 (2009)Google Scholar
  33. 33.
    Zhao, P.: Quantum variance of Maass-Hecke cusp forms. Comm. Math. Phys. 297(2), 475–514 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsRutgers University - Hill CenterPiscatawayUSA
  3. 3.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations