Inventiones mathematicae

, Volume 199, Issue 3, pp 581–652 | Cite as

Many projectively unique polytopes

  • Karim A. Adiprasito
  • Günter M. Ziegler


We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to \(96\). This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its \(f\)-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in \(S^d\), a new Alexandrov–van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence’s extension technique for point configurations.



We are grateful to Alexander Bobenko for background information on Q-nets, to Igor Pak for valuable discussions, to Francisco Santos for particularly helpful suggestions, and to Miriam Schlöter for some of the figures in this paper. The first author thanks the Hebrew University Jerusalem, whose hospitality he enjoyed on several occasions while working on this paper.


  1. 1.
    Adiprasito, K.A.: Methods from Differential Geometry in Polytope Theory, Ph.D. thesis, FU Berlin, Berlin, May 2013, XV+92 pages; arXiv:1403.2657.
  2. 2.
    Adiprasito, K.A., Padrol, A.: The universality theorem for inscribed polytopes and Delaunay triangulations (2014, preprint) IHÉS and FU Berlin, 16 pagesGoogle Scholar
  3. 3.
    Adiprasito, K.A., Padrol, A.: A universality theorem for projectively unique polytopes and a conjecture of Shephard, preprint, January 2013, revised June 2013, 9 pages. arXiv:1301.2960
  4. 4.
    Adler, V., Veselov, A.: Cauchy problem for integrable discrete equations on quad-graphs. Acta Appl. Math. 84, 237–262 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Alexandrov, A.D.: Intrinsic Geometry of Convex Surfaces. OGIZ, Moscow-Leningrad (1948), Russian; engl. translation by S. Vakhrameyev in “Selected Works of A. D. Alexandrov”, Chapman & Hall, New York (2005)Google Scholar
  6. 6.
    Aurenhammer, F.: A criterion for the affine equivalence of cell complexes in \(\mathbb{R}^d\) and convex polyhedra in \(\mathbb{R}^{d+1}\). Discret. Comput. Geom. 2, 49–64 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry, Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008)CrossRefGoogle Scholar
  8. 8.
    Brown, K.Q.: Voronoi diagrams from convex hulls. Inf. Process. Lett. 9, 223–228 (1979)Google Scholar
  9. 9.
    Crapo, H., Whiteley, W.: Plane self stresses and projected polyhedra. I. The basic pattern. Struct. Topol. 20, 55–78 (1993)Google Scholar
  10. 10.
    Crapo, H., Whiteley, W.: Spaces of stresses, projections and parallel drawings for spherical polyhedra. Beiträge Algebra Geom. 35, 259–281 (1994)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Cremona, L.: Graphical Statics: Two Treatises on the Graphical Calculus and Reciprocal Figures in Graphical Statics. Clarendon Press, Oxford (1890)Google Scholar
  12. 12.
    Davis, M.W., Moussong, G.: Notes on nonpositively curved polyhedra. In : Low-dimensional topology (Eger 1996, Budapest 1998), Bolyai Soc. Math. Stud., vol. 8, János Bolyai Math. Soc. Budapest, pp. 11–94 (1999)Google Scholar
  13. 13.
    Fenchel, W.: Über Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101, 238–252 (1929)Google Scholar
  14. 14.
    Gonska, B.: Inscribable polytopes via Delaunay triangulations, Ph.D. thesis, Freie Universität Berlin, Berlin (2013)Google Scholar
  15. 15.
    Gromov, M.: Hyperbolic groups, Essays in group theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987)Google Scholar
  16. 16.
    Grünbaum, B.: Convex polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003)Google Scholar
  17. 17.
    van Heijenoort, J.: On locally convex manifolds. Commun. Pure Appl. Math. 5, 223–242 (1952)CrossRefGoogle Scholar
  18. 18.
    Joswig, M., Ziegler, G.M.: Neighborly cubical polytopes. Discret. Comput. Geom. 24, 325–344 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kalai, G.: Polytope skeletons and paths. In: Goodman, J.E., O’Rourke J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn, pp. 455–476. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  20. 20.
    Kalai, G.: Open problems for convex polytopes I’d love to see solved, July 2012, Workshop for convex polytopes, Kyoto, slides available on
  21. 21.
    Legendre, A.M.: Éléments de Géométrie, Imprimerie Firmin Didot, Pére et Fils, Paris, 1794, 12th ed. 1823,
  22. 22.
    Maxwell, J.C.: XLV. On reciprocal figures and diagrams of forces. Phil. Mag. Ser. 4 27, 250–261 (1864)Google Scholar
  23. 23.
    Maxwell, J.C.: On reciprocal figures, frames, and diagrams of forces. Trans. R. Soc. Edinb. 26, 1–40 (1870)CrossRefGoogle Scholar
  24. 24.
    McMullen, P.: Representations of polytopes and polyhedral sets. Geometriae Dedicata 2, 83–99 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    McMullen, P.: Constructions for projectively unique polytopes. Discret. Math. 14, 347–358 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Miquel, A. : Théorèmes de géométrie, Journal de Mathématiques Pures et Appliquées \(1^{{\rm re}}\) série 3, 485–487 (1838)Google Scholar
  27. 27.
    Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and Geometry-Rohlin Seminar. Lecture Notes in Mathematics, vol. 1346, pp. 527–543. Springer, Berlin (1988)Google Scholar
  28. 28.
    Nakajima, S.: Einige Beiträge über konvexe Kurven und Flächen. Tohoku Math. J. 33, 219–230 (1931)Google Scholar
  29. 29.
    Perles, M.A., Shephard, G.C.: A construction for projectively unique polytopes. Geometriae Dedicata 3, 357–363 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Richter-Gebert, J.: Realization spaces of polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Berlin (1996)Google Scholar
  31. 31.
    Rivin, I.: A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Math. (2) 143, 51–70 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rivin, I.: Combinatorial optimization in geometry. Adv. Appl. Math. 31(1), 242–271 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebnisse Series, vol. 69. Springer, New York (1972)Google Scholar
  34. 34.
    Rybnikov, K.: Polyhedral partitions and stresses, Ph.D. thesis, Queen’s University, Kingston (Canada), 2000, 173 pages; published by ProQuest LLC, Ann Arbor, MI,
  35. 35.
    Rybnikov, K.: An efficient local approach to convexity testing of piecewise-linear hypersurfaces. Comput. Geom. 42, 147–172 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Santos, F.: Triangulations with very few geometric bistellar neighbors. Discret. Comput. Geom. 23, 15–33 (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176, 383–412 (2012)CrossRefzbMATHGoogle Scholar
  38. 38.
    Shephard, G.C.: Subpolytopes of stack polytopes. Israel J. Math. 19, 292–296 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Steiner, J.: Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander, Gesammelte Werke. Herausgegeben von K. Weierstrass, G. Reimer, Berlin (1881)Google Scholar
  40. 40.
    Steinitz, E.: Polyeder und Raumeinteilungen, Encyklopädie der mathematischen Wissenschaften, Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel III A B 12 (W. Fr. Meyer and H. Mohrmann, eds.), B.G. Teubner, Leipzig, pp. 1–139 (1922)Google Scholar
  41. 41.
    Steinitz, E.: Über isoperimetrische Probleme bei konvexen Polyedern. J. Reine Angew. Math. 159, 133–143 (1928)zbMATHGoogle Scholar
  42. 42.
    Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder unter Einschluß der Elemente der Topologie, Grundlehren Series, vol. 41. Springer, Berlin (1934)Google Scholar
  43. 43.
    Sullivan, J.M.: Curves of finite total curvature. In: Bobenko, A.I., Schröder, P., Sullivan J.M., Ziegler, G.M. (eds.) Discrete Differential Geometry. Oberwolfach Semin., vol. 38, pp. 137–161. Birkhäuser, Basel (2008)Google Scholar
  44. 44.
    Thurston, W.P.: The geometry and topology of 3-manifolds. Princeton Lecture Notes. Princeton Dept. of Mathematics, Princeton, NJ (1978)Google Scholar
  45. 45.
    Tietze, H.: Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen. Math. Z. 28, 697–707 (1928)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Trudinger, N.S., Wang, X.-J.: On locally convex hypersurfaces with boundary. J. Reine Angew. Math. 551, 11–32 (2002)zbMATHMathSciNetGoogle Scholar
  47. 47.
    von Staudt, K.G.C.: Beiträge zur Geometrie der Lage, no. 2, Baur und Raspe, Nürnberg (1857)Google Scholar
  48. 48.
    Ziegler, G.M.: Nonrational configurations, polytopes, and surfaces. Math. Intell. 30, 36–42 (2008)CrossRefzbMATHGoogle Scholar
  49. 49.
    Ziegler, G.M.: Polytopes with low-dimensional realization spaces (joint work with K. Adiprasito). Oberwolfach Rep. 8, 2522–2525 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  2. 2.Institut für Mathematik, FU BerlinBerlinGermany

Personalised recommendations