Inventiones mathematicae

, Volume 198, Issue 3, pp 505–590 | Cite as

MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations

Article

Abstract

We use wall-crossing with respect to Bridgeland stability conditions to systematically study the birational geometry of a moduli space \(M\) of stable sheaves on a K3 surface \(X\): (a) We describe the nef cone, the movable cone, and the effective cone of \(M\) in terms of the Mukai lattice of \(X\). (b) We establish a long-standing conjecture that predicts the existence of a birational Lagrangian fibration on \(M\) whenever \(M\) admits an integral divisor class \(D\) of square zero (with respect to the Beauville–Bogomolov form). These results are proved using a natural map from the space of Bridgeland stability conditions \(\mathop {\mathrm {Stab}}\nolimits (X)\) to the cone \(\mathop {{\mathrm {Mov}}}\nolimits (X)\) of movable divisors on \(M\); this map relates wall-crossing in \(\mathop {\mathrm {Stab}}\nolimits (X)\) to birational transformations of \(M\). In particular, every minimal model of \(M\) appears as a moduli space of Bridgeland-stable objects on \(X\).

Mathematics Subject Classification (2010)

14D20 (Primary) 18E30 14J28 14E30 (Secondary ) 

Notes

Acknowledgments

Conversations with Ralf Schiffler dissuaded us from pursuing a failed approach to the birationality of wall-crossing, and we had extremely useful discussions with Daniel Huybrechts. Tom Bridgeland pointed us towards Corollary 1.3, and Dragos Oprea towards the results in Sect. 15. We also received helpful comments from Daniel Greb, Antony Maciocia, Alina Marian, Eyal Markman, Dimitri Markushevich, Daisuke Matsushita, Ciaran Meachan, Misha Verbitsky, Kōta Yoshioka, Ziyu Zhang, and we would like to thank all of them. We would also like to thank the referee very much for an extremely careful reading of the paper, and for many useful suggestions. The authors were visiting the Max-Planck-Institut Bonn, respectively the Hausdorff Center for Mathematics in Bonn, while working on this paper, and would like to thank both institutes for their hospitality and stimulating atmosphere. A. B.  is partially supported by NSF grant DMS-1101377. E. M.  is partially supported by NSF grant DMS-1001482/DMS-1160466, Hausdorff Center for Mathematics, Bonn, and by SFB/TR 45.

References

  1. 1.
    Arcara, D., Bertram, A.,: Bridgeland-stable moduli spaces for \(K\)-trivial surfaces. J. Eur. Math. Soc. (JEMS) 15(1):1–38 (2013) (with an appendix by Max Lieblich). arXiv:0708.2247Google Scholar
  2. 2.
    Arcara, D., Bertram, A., Coskun, I., Huizenga, J.: The minimal model program for the Hilbert scheme of points on \(\mathbb{P}^2\) and Bridgeland stability. Adv. Math. 235, 580–626 (2013). arXiv:1203.0316MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Amerik, E.: A remark on a question of Beauville about lagrangian fibrations. Mosc. Math. J. 12(4), 701–704 (2012). arXiv:1110.2852MATHMathSciNetGoogle Scholar
  4. 4.
    Abramovich, D., Polishchuk, A.: Sheaves of \(t\)-structures and valuative criteria for stable complexes. J. Reine Angew. Math. 590, 89–130 (2006). arXiv:math/0309435MATHMathSciNetGoogle Scholar
  5. 5.
    Bayer, A.: Polynomial Bridgeland stability conditions and the large volume limit. Geom. Topol. 13(4), 2389–2425 (2009). arXiv:0712.1083MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertram, A., Coskun, I.: The birational geometry of the Hilbert scheme of points on surfaces. In: Birational Geometry, Rational Curves and Arithmetic, Simons Symposia, pp. 15–55. Springer, Berlin (2013) http://homepages.math.uic.edu/coskun/
  7. 7.
    Birkar, C., Cascini, P., Hacon, C.D., M\(^{{\rm c}}\)Kernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010). arXiv:math/0610203Google Scholar
  8. 8.
    Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1984)Google Scholar
  9. 9.
    Beauville, A.: Systèmes hamiltoniens complètement intégrables associés aux surfaces \(K3\). In: Problems in the Theory of Surfaces and Their Classification (Cortona, 1988), Sympos. Math., vol. XXXII, pp. 25–31. Academic Press, London (1991)Google Scholar
  10. 10.
    Beauville, A.: Counting rational curves on \(K3\) surfaces. Duke Math. J. 97(1), 99–108 (1999). arXiv:alg-geom/9701019MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bayer, A., Hassett, B., Tschinkel, Y.: Mori cones of holomorphic symplectic varieties of K3 type (2013). arXiv:1307.2291Google Scholar
  12. 12.
    Bakker, B., Jorza, A.: Lagrangian hyperplanes in holomorphic symplectic varieties (2011). arXiv:1111.0047.Google Scholar
  13. 13.
    Bayer, A., Macrì, E.: The space of stability conditions on the local projective plane. Duke Math. J. 160(2), 263–322 (2011). arXiv:0912.0043MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bayer, A., Macrì, E.: Projectivity and birational geometry of Bridgeland moduli spaces (2012). arXiv:1203.4613Google Scholar
  15. 15.
    Bayer, A., Macrì, E., Toda, Y.: Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities. J. Geom. Alg. (2011). arXiv:1103.5010Google Scholar
  16. 16.
    Bertram, A., Martinez, C., Wang, J.: The birational geometry of moduli space of sheaves on the projective plane (2013). arXiv:1301.2011Google Scholar
  17. 17.
    Boucksom, S.: Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1), 45–76 (2004)MATHMathSciNetGoogle Scholar
  18. 18.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007). arXiv:math/0212237MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bridgeland, T.: Stability conditions on \(K3\) surfaces. Duke Math. J. 141(2), 241–291 (2008). arXiv:math/0307164MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Căldăraru, A.: Derived categories of twisted sheaves on Calabi-Yau manifolds. ProQuest LLC, Ph.D. Thesis. Cornell University, Ann Arbor (2000)Google Scholar
  21. 21.
    Căldăraru, A.: Nonfine moduli spaces of sheaves on \(K3\) surfaces. Int. Math. Res. Not. 20(20), 1027–1056 (2002). arXiv:math/0108180Google Scholar
  22. 22.
    Ciliberto, C., Knutsen, A.L.: On \(k\)-gonal loci in Severi varieties on general \({K}3\) surfaces and rational curves on hyperkähler manifolds.J. Math. Pures Appl. (2012). arXiv:1204.4838Google Scholar
  23. 23.
    Dolgachev, I.V., Hu, Y.: Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math. 87(87), 5–56 (1998) (with an appendix by Nicolas Ressayre). arXiv:alg-geom/9402008Google Scholar
  24. 24.
    Ellingsrud, G., Göttsche, L.: Variation of moduli spaces and Donaldson invariants under change of polarization. J. Reine Angew. Math. 467, 1–49 (1995). arXiv:alg-geom/9410005MATHMathSciNetGoogle Scholar
  25. 25.
    Friedman, R., Qin, Z.: Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces. Commun. Anal. Geom. 3(1—-2), 11–83 (1995). arXiv:alg-geom/9410007MATHMathSciNetGoogle Scholar
  26. 26.
    Fedorchuk, M., Smyth, D.I.: Alternate compactifications of moduli spaces of curves. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, vol. I, volume 24 of Adv. Lect. Math., pp. 331–414. Int. Press, Somerville (2013). arXiv:1012.0329Google Scholar
  27. 27.
    Fujino, O.: On Kawamata’s theorem. In: Classification of Algebraic Varieties, EMS Ser. Congr. Rep., pp. 305–315. Eur. Math. Soc., Zürich (2011). arXiv:0910.1156Google Scholar
  28. 28.
    Gross, M., Huybrechts, D., Joyce, D.: Calabi–Yau manifolds and related geometries. Universitext. Springer, Berlin (2003) (Lectures from the Summer School held in Nordfjordeid, June 2001)Google Scholar
  29. 29.
    Greb, D., Lehn, C., Rollenske, S.: Lagrangian fibrations on hyperkähler fourfolds. Izv. Mat. (2011). arXiv:1110.2680Google Scholar
  30. 30.
    Greb, D., Lehn, C., Rollenske, S.: Lagrangian fibrations on hyperkähler manifolds—on a question of Beauville. Ann. École Norm. Sup. Sci. (2011). arXiv:1105.3410Google Scholar
  31. 31.
    Hartmann, H.: Cusps of the Kähler moduli space and stability conditions on K3 surfaces. Math. Ann. 354(1), 1–42 (2012). arXiv:1012.3121MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Harvey, D., Hassett, B., Tschinkel, Y.: Characterizing projective spaces on deformations of Hilbert schemes of K3 surfaces. Commun. Pure Appl. Math. 65(2), 264–286 (2012). arXiv:1011.1285MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2010)Google Scholar
  34. 34.
    Hosono, S., Lian, B.H., Oguiso, K., Yau, S.-T.: Autoequivalences of derived category of a \(K3\) surface and monodromy transformations. J. Algebraic Geom. 13(3), 513–545 (2004). arXiv:math/0201047MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Huybrechts, D., Macrì, E., Stellari, P.: Stability conditions for generic \(K3\) categories. Compos. Math. 144(1), 134–162 (2008). arXiv:math/0608430MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Huybrechts, D., Macrì, E., Stellari, P.: Derived equivalences of \(K3\) surfaces and orientation. Duke Math. J. 149(3), 461–507 (2009). arXiv:0710.1645MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Huybrechts, D., Stellari, P.: Equivalences of twisted \(K3\) surfaces. Math. Ann. 332(4), 901–936 (2005). arXiv:math/0409030MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Huybrechts, D., Stellari, P.: Proof of Căldăraru’s conjecture. Appendix to: “Moduli spaces of twisted sheaves on a projective variety” by K. Yoshioka. In Moduli spaces and arithmetic geometry, volume 45 of Adv. Stud. Pure Math., pp. 31–42. Math. Soc. Japan, Tokyo (2006). arXiv:math/0411541Google Scholar
  39. 39.
    Hassett, B., Tschinkel, Y.: Rational curves on holomorphic symplectic fourfolds. Geom. Funct. Anal. 11(6), 1201–1228 (2001). arXiv:math/9910021MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Hassett, B., Tschinkel, Y.: Moving and ample cones of holomorphic symplectic fourfolds. Geom. Funct. Anal. 19(4), 1065–1080 (2009). arXiv:0710.0390MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Hassett, B., Tschinkel, Y.: Intersection numbers of extremal rays on holomorphic symplectic varieties. Asian J. Math. 14(3), 303–322 (2010). arXiv:0909.4745MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Huizenga, J.: Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles (2012). arXiv:1210.6576Google Scholar
  43. 43.
    Huybrechts, D.: Compact hyper-Kähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999). arXiv:alg-geom/9705025MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Huybrechts, D.: The Kähler cone of a compact hyperkähler manifold. Math. Ann. 326(3), 499–513 (2003). arXiv:math/9909109MATHMathSciNetGoogle Scholar
  45. 45.
    Huybrechts, D.: Derived and abelian equivalence of \(K3\) surfaces. J. Algebraic Geom. 17(2), 375–400 (2008). arXiv:math/0604150MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Huybrechts, D.: A global Torelli theorem for hyperkähler manifolds (after Verbitsky) (2011). arXiv:1106.5573Google Scholar
  47. 47.
    Hwang, J.-M., Weiss, R.M.: Webs of Lagrangian tori in projective symplectic manifolds. Invent. Math. 192(1), 83–109 (2013). arXiv:1201.2369MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Hwang, J.-M.: Base manifolds for fibrations of projective irreducible symplectic manifolds. Invent. Math. 174(3), 625–644 (2008). arXiv:0711.3224MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79(3), 567–588 (1985)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Kaledin, D., Lehn, M., Sorger, Ch.: Singular symplectic moduli spaces. Invent. Math. 164(3), 591–614 (2006). arXiv:math/0504202MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Kovács, S.J.: The cone of curves of a \(K3\) surface. Math. Ann. 300(4), 681–691 (1994)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008). arXiv:0811.2435Google Scholar
  53. 53.
    Li, J.: Algebraic geometric interpretation of Donaldson’s polynomial invariants. J. Differ. Geom. 37(2), 417–466 (1993)MATHGoogle Scholar
  54. 54.
    Lieblich, M.: Moduli of twisted sheaves. Duke Math. J. 138(1), 23–118 (2007). arXiv:math/0411337MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Lo, J.: On some moduli of complexes on \({K}3\) surfaces (2012). arXiv:1203.1558.Google Scholar
  56. 56.
    Le Potier, J.: Dualité étrange, sur les surfaces (2005)Google Scholar
  57. 57.
    Lo, J., Qin, Z.: Mini-walls for Bridgeland stability conditions on the derived category of sheaves over surfaces (2011). arXiv:1103.4352Google Scholar
  58. 58.
    Maciocia, A.: Computing the walls associated to Bridgeland stability conditions on projective surfaces. Asian J. Math. (2012). arXiv:1202.4587Google Scholar
  59. 59.
    Markman, E.: Brill-Noether duality for moduli spaces of sheaves on \(K3\) surfaces. J. Algebraic Geom. 10(4), 623–694 (2001). arXiv:math/9901072MATHMathSciNetGoogle Scholar
  60. 60.
    Markushevich, D.: Rational Lagrangian fibrations on punctual Hilbert schemes of \(K3\) surfaces. Manuscr. Math. 120(2), 131–150 (2006). arXiv:math/0509346MATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Markman, E.: Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a \(K3\) surface. Int. J. Math. 21(2), 169–223 (2010). arXiv:math/0601304MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties. In: Complex and Differential Geometry, volume 8 of Springer Proc. Math., pp. 257–322. Springer, Heidelberg (2011). arXiv:1101.4606Google Scholar
  63. 63.
    Markman, E.: Lagrangian fibrations of holomorphic-symplectic varieties of \({K3}^{[n]}\)-type (2013). arXiv:1301.6584Google Scholar
  64. 64.
    Markman, E.: Prime exceptional divisors on holomorphic symplectic varieties and monodromy-reflections. Kyoto J. Math. 53(2), 345–403 (2013). arXiv:0912.4981MATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Matsushita, D.: On fibre space structures of a projective irreducible symplectic manifold. Topology 38(1), 79–83 (1999). arXiv:alg-geom/9709033MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Matsushita, D.: Addendum: “On fibre space structures of a projective irreducible symplectic manifold” [Topology 38 (1999), no. 1, 79–83; MR1644091 (99f:14054)]. Topology 40(2), 431–432 (2001). arXiv:math/9903045Google Scholar
  67. 67.
    Matsushita, D.: On almost holomorphic Lagrangian fibrations (2012). arXiv:1209.1194Google Scholar
  68. 68.
    Matsushita, D.: On isotropic divisors on irreducible symplectic manifolds (2013). arXiv:1310.0896Google Scholar
  69. 69.
    Markman, E., Mehrotra, S.: Hilbert schemes of K3 surfaces are dense in moduli (2012). arXiv:1201.0031Google Scholar
  70. 70.
    Maciocia, A., Meachan, C.: Rank one Bridgeland stable moduli spaces on a principally polarized abelian surface. Int. Math. Res. Not. IMRN 9, 2054–2077 (2013). arXiv:1107.5304MathSciNetGoogle Scholar
  71. 71.
    Marian, A., Oprea, D.: A tour of theta dualities on moduli spaces of sheaves. In: Curves and Abelian Varieties, volume 465 of Contemp. Math., pp. 175–201. Amer. Math. Soc., Providence (2008). arXiv:0710.2908Google Scholar
  72. 72.
    Mongardi, G: A note on the Kähler and Mori cones of manifolds of \({K3}^{[n]}\) type (2013). arXiv:1307.0393Google Scholar
  73. 73.
    Morrison, D.R.: On \(K3\) surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)MATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Mukai, S.: Duality between \(D(X)\) and \(D(\hat{X})\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)MATHMathSciNetGoogle Scholar
  75. 75.
    Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or \(K3\) surface. Invent. Math. 77(1), 101–116 (1984)MATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    Mukai, S.: On the moduli space of bundles on \(K3\) surfaces. I. In: Vector Bundles on Algebraic Varieties (Bombay, 1984), volume 11 of Tata Inst. Fund. Res. Stud. Math., pp. 341–413. Tata Inst. Fund. Res., Bombay (1987)Google Scholar
  77. 77.
    Mukai, S.: Fourier functor and its application to the moduli of bundles on an abelian variety. In: Algebraic Geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pp. 515–550. North-Holland, Amsterdam (1987)Google Scholar
  78. 78.
    Matsuki, K., Wentworth, R.: Mumford–Thaddeus principle on the moduli space of vector bundles on an algebraic surface. Int. J. Math. 8(1), 97–148 (1997). arXiv:alg-geom/9410016Google Scholar
  79. 79.
    Minamide, H., Yanagida, S., Yoshioka, K.: Fourier-mukai transforms and the wall-crossing behavior for Bridgeland’s stability conditions (2011). arXiv:1106.5217Google Scholar
  80. 80.
    Minamide, H., Yanagida, S., Yoshioka, K.: Some moduli spaces of Bridgeland’s stability conditions (2011). arXiv:1111.6187Google Scholar
  81. 81.
    Namikawa, Y.: Deformation theory of singular symplectic \(n\)-folds. Math. Ann. 319(3), 597–623 (2001). arXiv:math/0010113MATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    O’Grady, K.G.: Desingularized moduli spaces of sheaves on a \(K3\). J. Reine Angew. Math. 512, 49–117 (1999). arXiv:alg-geom/9708009MATHMathSciNetGoogle Scholar
  83. 83.
    Orlov, D.O.: Equivalences of derived categories and \(K3\) surfaces. J. Math. Sci. (New York) 84(5), 1361–1381 (1997) (Algebraic, geometry, 7). arXiv:alg-geom/9606006Google Scholar
  84. 84.
    Ploog, D.: Groups of autoequivalences of derived categories of smooth projective varieties. PhD-thesis, Berlin (2005)Google Scholar
  85. 85.
    Polishchuk, A.: Constant families of \(t\)-structures on derived categories of coherent sheaves. Mosc. Math. J. 7(1), 109–134, 167 (2007). arXiv:math/0606013Google Scholar
  86. 86.
    Sawon, J.: Abelian fibred holomorphic symplectic manifolds. Turkish J. Math. 27(1), 197–230 (2003). arXiv:math/0404362MATHMathSciNetGoogle Scholar
  87. 87.
    Sawon, J.: Lagrangian fibrations on Hilbert schemes of points on \(K3\) surfaces. J. Algebraic Geom. 16(3), 477–497 (2007). arXiv:math/0509224MATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108(1), 37–108 (2001). arXiv:math/0001043MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Thaddeus, M.: Geometric invariant theory and flips. J. Am. Math. Soc. 9(3), 691–723 (1996). arXiv:alg-geom/9405004MATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    Toda, Y.: Moduli stacks and invariants of semistable objects on \(K3\) surfaces. Adv. Math. 217(6), 2736–2781 (2008). arXiv:math.AG/0703590MATHMathSciNetCrossRefGoogle Scholar
  91. 91.
    Verbitsky, M.: Cohomology of compact hyper-Kähler manifolds and its applications. Geom. Funct. Anal. 6(4), 601–611 (1996). arXiv:alg-geom/9511009MATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    Verbitsky, M.: A global Torelli theorem for hyperkähler manifolds. Duke Math. J. (2009). arXiv:0908.4121Google Scholar
  93. 93.
    Verbitsky, M.: HyperKähler SYZ conjecture and semipositive line bundles. Geom. Funct. Anal. 19(5), 1481–1493 (2010). arXiv:0811.0639MATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Wierzba, J.: Contractions of symplectic varieties. J. Algebraic Geom. 12(3), 507–534 (2003). arXiv:math/9910130MATHMathSciNetCrossRefGoogle Scholar
  95. 95.
    Yoshioka, K.: Irreducibility of moduli spaces of vector bundles on K3 surfaces (1999). arXiv:math/9907001Google Scholar
  96. 96.
    Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001). arXiv:math/0009001MATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    Yoshioka, K.: Moduli spaces of twisted sheaves on a projective variety. In: Moduli Spaces and Arithmetic Geometry, volume 45 of Adv. Stud. Pure Math., pp. 1–30. Math. Soc. Japan, Tokyo (2006). arXiv:math/0411538Google Scholar
  98. 98.
    Yoshioka, K.: Fourier-Mukai transform on abelian surfaces. Math. Ann. 345(3), 493–524 (2009). arXiv:math/0605190MATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    Yoshioka, K.: Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface (2012). arXiv:1206.4838Google Scholar
  100. 100.
    Yanagida, S., Yoshioka, K.: Bridgeland’s stabilities on abelian surfaces (2012). arXiv:1203.0884Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of MathematicsThe University of EdinburghEdinburghScotland, UK
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations