Inventiones mathematicae

, Volume 197, Issue 1, pp 115–213 | Cite as

Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations

  • Mathew A. Johnson
  • Pascal Noble
  • L. Miguel Rodrigues
  • Kevin Zumbrun
Article

Abstract

We establish nonlinear stability and asymptotic behavior of traveling periodic waves of viscous conservation laws under localized perturbations or nonlocalized perturbations asymptotic to constant shifts in phase, showing that long-time behavior is governed by an associated second-order formal Whitham modulation system. A key point is to identify the way in which initial perturbations translate to initial data for this formal system, a task accomplished by detailed estimates on the linearized solution operator about the background wave. Notably, our approach gives both a common theoretical treatment and a complete classification in terms of “phase-coupling” or “-decoupling” of general systems of conservation or balance laws, encompassing cases that had previously been studied separately or not at all.

At the same time, our refined description of solutions gives the new result of nonlinear asymptotic stability with respect to localized perturbations in the phase-decoupled case, further distinguishing behavior in the different cases. An interesting technical aspect of our analysis is that for systems of conservation laws the Whitham modulation description is of system rather than scalar form, as a consequence of which renormalization methods such as have been used to treat the reaction-diffusion case in general do not seem to apply.

Mathematics Subject Classification (2010)

35B40 35B10 35B35 35L65 

References

  1. 1.
    Balmforth, N.J., Mandre, S.: Dynamics of roll waves. J. Fluid Mech. 514, 1–33 (2004) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Barker, B., Johnson, M., Noble, P., Rodrigues, M.: Stability of roll waves of the inclined capillary Saint Venant equations (Work in progress) Google Scholar
  3. 3.
    Barker, B., Johnson, M., Noble, P., Rodrigues, M., Zumbrun, K.: Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation. Phys. D, Nonlinear Phenom. 258, 11–46 (2013) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Barker, B., Johnson, M., Noble, P., Rodrigues, M., Zumbrun, K.: Efficient numerical evaluation of the periodic Evans function of Gardner and spectral stability of periodic viscous roll waves (in preparation) Google Scholar
  5. 5.
    Barker, B., Johnson, M., Noble, P., Rodrigues, M., Zumbrun, K.: Witham averaged equations and modulational stability of periodic solutions of hyperbolic-parabolic balance laws. In: Journéees Équations aux Dérivées Partielles, June 2010, Port d’Albret, France, pp. 1–24 (2010). Available as http://eudml.org/doc/116384 Google Scholar
  6. 6.
    Barker, B., Lewicka, M., Zumbrun, K.: Existence and stability of viscoelastic shock waves. Arch. Ration. Mech. Anal. 200(2), 491–532 (2011) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Barker, B., Johnson, M., Noble, P., Rodrigues, M., Zumbrun, K.: Stability of periodic Kuramoto–Sivashinsky waves. Appl. Math. Lett. 25, 824–829 (2012) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Beck, M., Nguyen, T., Sandstede, B., Zumbrun, K.: Toward nonlinear stability of sources via a modified Burgers equation. Physica D 241, 382–392 (2012) CrossRefMATHGoogle Scholar
  9. 9.
    Benzoni-Gavage, S., Noble, P., Rodrigues, M.: Slow modulations of periodic waves in capillary fluids (submitted). arXiv:1303.6467
  10. 10.
    Bertozzi, A., Münch, A., Fanton, X., Cazabat, A.M.: Contact line stability and ‘undercompressive shocks’ in driven thin film flow. Phys. Rev. Lett. 8(23), 5169–5172 (1998) CrossRefGoogle Scholar
  11. 11.
    Bertozzi, A., Münch, A., Shearer, M., Zumbrun, K.: Stability of compressive and undercompressive thin film travelling waves. Eur. J. Appl. Math. 12(3), 253–291 (2001) CrossRefMATHGoogle Scholar
  12. 12.
    Chang, H.C., Demekhin, E.A., Kopelevich, D.I.: Laminarizing effects of dispersion in an active-dissipative nonlinear medium. Physica D 63, 299–320 (1993) CrossRefMATHGoogle Scholar
  13. 13.
    Collet, P., Eckmann, J.-P.: The stability of modulated fronts. Helv. Phys. Acta 60, 969–991 (1987) MATHMathSciNetGoogle Scholar
  14. 14.
    Collet, P., Eckmann, J.-P.: Instabilities and Fronts in Extended Systems. Princeton University Press, Princeton (1990) MATHGoogle Scholar
  15. 15.
    Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The Dynamics of Modulated Wavetrains. Mem. Am. Math. Soc., vol. 199 (2009), no. 934, viii+105 pp. ISBN: 978-0-8218-4293-5 Google Scholar
  16. 16.
    Dressler, R.: Mathematical solution of the problem of roll waves in inclined open channels. Commun. Pure Appl. Math. 2, 149–190 (1949) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Eckhaus, W.: Studies in Nonlinear Stability Theory. Springer Tracts in Nat. Phil., vol. 6 (1965) CrossRefGoogle Scholar
  18. 18.
    Frisch, U., She, Z.S., Thual, O.: Viscoelastic behaviour of cellular solutions to the Kuramoto–Sivashinsky model. J. Fluid Mech. 168, 221–240 (1986) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gardner, R.: On the structure of the spectra of periodic traveling waves. J. Math. Pures Appl. 72, 415–439 (1993) MATHMathSciNetGoogle Scholar
  20. 20.
    Häcker, T., Schneider, G., Zimmermann, D.: Justification of the Ginzburg-Landau approximation in case of marginally stable long waves. J. Nonlinear Sci. 21(1), 93–113 (2011) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Springer, Berlin (1981) MATHGoogle Scholar
  22. 22.
    Hoff, D., Smoller, J.: Global existence for systems of parabolic conservation laws in several space variables. J. Differ. Equ. 68, 210–220 (1987) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Hoff, D., Zumbrun, K.: Asymptotic behavior of multidimensional scalar viscous shock fronts. Indiana Univ. Math. J. 49(2), 427–474 (2000) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Howard, L.N., Kopell, N.: Slowly varying waves and shock structures in reaction-diffusion equations. Stud. Appl. Math. 56(2), 95–145 (1976/77) MathSciNetGoogle Scholar
  25. 25.
    Johnson, M., Zumbrun, K.: Nonlinear stability of periodic traveling waves of viscous conservation laws in the generic case. J. Differ. Equ. 249(5), 1213–1240 (2010) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Johnson, M., Zumbrun, K.: Rigorous justification of the Whitham modulation equations for the generalized Korteweg–de Vries equation. Stud. Appl. Math. 125(1), 69–89 (2010) MATHMathSciNetGoogle Scholar
  27. 27.
    Johnson, M., Zumbrun, K.: Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction diffusion equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(4), 471–483 (2011) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Johnson, M., Zumbrun, K.: Nonlinear stability and asymptotic behavior of periodic traveling waves of multidimensional viscous conservation laws in dimensions one and two. SIAM J. Appl. Dyn. Syst. 10(1), 189–211 (2011) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Johnson, M., Zumbrun, K., Bronski, J.: Bloch wave expansion vs. Whitham modulation equations for the generalized Korteweg–de Vries equation. J. Differ. Equ. 249(5), 1213–1240 (2010) CrossRefMATHGoogle Scholar
  30. 30.
    Johnson, M., Zumbrun, K., Noble, P.: Nonlinear stability of viscous roll waves. SIAM J. Math. Anal. 43(2), 557–611 (2011) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Johnson, M., Noble, P., Rodrigues, L.M., Zumbrun, K.: Spectral stability of periodic wave trains of the Korteweg–de Vries/Kuramoto–Sivashinsky equation in the Korteweg–de Vries limit. Preprint (2012) Google Scholar
  32. 32.
    Johnson, M., Noble, P., Rodrigues, L.M., Zumbrun, K.: Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability. Arch. Ration. Mech. Anal. 207(2), 693–715 (2013) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Johnson, M., Noble, P., Rodrigues, L.M., Zumbrun, K.: Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation. Arch. Ration. Mech. Anal. 207(2), 669–692 (2013) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1985) Google Scholar
  35. 35.
    Kawashima, S.: Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. R. Soc. Edinb., Sect. A 106(1–2), 169–194 (1987) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Kotschote, M.: Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg-type. SIAM J. Math. Anal. 44(1), 74–101 (2012) CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Kwon, B., Zumbrun, K.: Asymptotic behavior of multidimensional scalar relaxation shocks. J. Hyperbolic Differ. Equ. 6(4), 663–708 (2009) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction-diffusion systems. Prog. Theor. Phys. 54, 3 (1975) Google Scholar
  39. 39.
    Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 11. Society for Industrial and Applied Mathematics, Philadelphia (1973). v+48 pp. CrossRefMATHGoogle Scholar
  40. 40.
    Liu, T.-P.: Interaction of nonlinear hyperbolic waves. In: Nonlinear Analysis, Taipei, pp. 171–183 (1989) Google Scholar
  41. 41.
    Liu, T.-P., Zeng, Y.: Large Time Behavior of Solutions for General Quasilinear Hyperbolic–Parabolic Systems of Conservation Laws. AMS Memoirs, vol. 599 (1997) Google Scholar
  42. 42.
    Mascia, C., Zumbrun, K.: Stability of large-amplitude viscous shock profiles of hyperbolic–parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131 (2004) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Matar, O.K., Troian, S.M.: Dynamics and stability of surfactant coated thin spreading films. Mater. Res. Soc. Symp. Proc. 464, 237–242 (1997) CrossRefGoogle Scholar
  44. 44.
    Mielke, A.: A new approach to sideband-instabilities using the principle of reduced instability. In: Nonlinear Dynamics and Pattern Formation in the Natural Environment. Pitman Res. Notes Math. Ser., vol. 335, pp. 206–222 (1995) Google Scholar
  45. 45.
    Nguyen, T., Zumbrun, K.: Long-time stability of multi-dimensional noncharacteristic viscous boundary layers. Commun. Math. Phys. 299(1), 1–44 (2010) CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Noble, P.: On the spectral stability of roll waves. Indiana Univ. Math. J. 55, 795–848 (2006) CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Noble, P.: Linear stability of viscous roll waves. Commun. Partial Differ. Equ. 32(10–12), 1681–1713 (2007) CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Noble, P., Rodrigues, M.: Whitham’s modulation equations for shallow flows. Unpublished manuscript (2010). arXiv:1011.2296
  49. 49.
    Noble, P., Rodrigues, M.: Whithams modulation equations and stability of periodic wave solutions of the generalized Kuramoto-Sivashinsky equations. Indiana Univ. Math. J. (to appear) Google Scholar
  50. 50.
    Oh, M., Zumbrun, K.: Stability of periodic solutions of viscous conservation laws with viscosity—1. Analysis of the Evans function. Arch. Ration. Mech. Anal. 166(2), 99–166 (2003) CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Oh, M., Zumbrun, K.: Stability of periodic solutions of viscous conservation laws with viscosity—pointwise bounds on the Green function. Arch. Ration. Mech. Anal. 166(2), 167–196 (2003) CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Oh, M., Zumbrun, K.: Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions. Z. Anal. Anwend. 25, 1–21 (2006) CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Oh, M., Zumbrun, K.: Stability and asymptotic behavior of traveling-wave solutions of viscous conservation laws in several dimensions. Arch. Ration. Mech. Anal. 196(1), 1–20 (2010). Erratum: Arch. Ration. Mech. Anal. 196(1), 21–23 (2010) CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Pego, R., Schneider, H., Uecker, H.: Long-time persistence of Korteweg–de Vries solitons as transient dynamics in a model of inclined film flow. Proc. R. Soc. Edinb. A 137, 133–146 (2007) CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Pogan, A., Scheel, A., Zumbrun, K.: Quasi-gradient systems, modulational dichotomies, and stability of spatially periodic patterns. Preprint (2012) Google Scholar
  56. 56.
    Prüss, J.: On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984) CrossRefMATHGoogle Scholar
  57. 57.
    Sandstede, B., Scheel, A., Schneider, G., Uecker, H.: Diffusive mixing of periodic wave trains in reaction-diffusion systems. J. Differ. Equ. 252(5), 3541–3574 (2012) CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Schecter, S., Shearer, M.: Transversality for undercompressive shocks in Riemann problems. In: Viscous Profiles and Numerical Methods for Shock Waves, Raleigh, NC, 1990, pp. 142–154. SIAM, Philadelphia (1991) Google Scholar
  59. 59.
    Schneider, G.: Diffusive stability of spatial periodic solutions of the Swift–Hohenberg equation. Commun. Math. Phys. 178(3), 679–702 (1996) (English summary) CrossRefMATHGoogle Scholar
  60. 60.
    Schneider, G.: Nonlinear diffusive stability of spatially periodic solutions—abstract theorem and higher space dimensions. In: Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems, Sendai, 1997. Tohoku Math. Publ., vol. 8, pp. 159–167. Tohoku Univ., Sendai (1998) Google Scholar
  61. 61.
    Schneider, G.: Nonlinear stability of Taylor vortices in infinite cylinders. Arch. Ration. Mech. Anal. 144(2), 121–200 (1998) CrossRefMATHGoogle Scholar
  62. 62.
    Serre, D.: Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis. Commun. Partial Differ. Equ. 30(1–3), 259–282 (2005) CrossRefMATHGoogle Scholar
  63. 63.
    Sivashinsky, G.I.: Nonlinear analysis of hydrodynamic instability in laminar flame. I. Derivation of basic equations. Acta Astron. 4(11–12), 1177–1206 (1977) CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Smoller, J.: Shock Waves and Reaction–Diffusion Equations, 2nd edn. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 258. Springer, New York (1994). xxiv+632 pp. ISBN: 0-387-94259-9 CrossRefMATHGoogle Scholar
  65. 65.
    Texier, B., Zumbrun, K.: Relative Poincaré–Hopf bifurcation and galloping instability of traveling waves. Methods Appl. Anal. 12(4), 349–380 (2005) MATHMathSciNetGoogle Scholar
  66. 66.
    Texier, B., Zumbrun, K.: Galloping instability of viscous shock waves. Physica D 237, 1553–1601 (2008) CrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    Texier, B., Zumbrun, K.: Nash–Moser iterates and singular perturbations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(4), 499–527 (2011) CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics (New York). Wiley, New York (1999). Reprint of the 1974 original, A Wiley-Interscience Publication CrossRefMATHGoogle Scholar
  69. 69.
    Yao, J.: Existence and stability of periodic solutions of the equations of viscoelasticity with strain-gradient effects. Preprint (2011) Google Scholar
  70. 70.
    Zimmermann, D.: PhD thesis, University of Stuttgart (2011) Google Scholar
  71. 71.
    Zumbrun, K.: Refined wave-tracking and stability of viscous Lax shocks. Methods Appl. Anal. 7, 747–768 (2000) MATHMathSciNetGoogle Scholar
  72. 72.
    Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations. In: Handbook of Mathematical Fluid Dynamics, vol. III, pp. 311–533. North-Holland, Amsterdam (2004). With an appendix by Helge Kristian Jenssen and Gregory Lyng Google Scholar
  73. 73.
    Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. In: Marcati, P. (ed.) Hyperbolic Systems of Balance Laws. CIME School Lectures Notes. Lecture Note in Mathematics, vol. 1911. Springer, Berlin (2004) Google Scholar
  74. 74.
    Zumbrun, K.: Conditional stability of unstable viscous shocks. J. Differ. Equ. 247(2), 648–671 (2009) CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    Zumbrun, K.: Stability and dynamics of viscous shock waves. In: Nonlinear Conservation Laws and Applications. IMA Vol. Math. Appl., vol. 153, pp. 123–167. Springer, New York (2011) CrossRefGoogle Scholar
  76. 76.
    Zumbrun, K.: Instantaneous shock location and one-dimensional nonlinear stability of viscous shock waves. Q. Appl. Math. 69(1), 177–202 (2011) MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathew A. Johnson
    • 1
  • Pascal Noble
    • 2
  • L. Miguel Rodrigues
    • 2
  • Kevin Zumbrun
    • 3
  1. 1.University of KansasLawrenceUSA
  2. 2.Université Lyon IVilleurbanneFrance
  3. 3.Indiana UniversityBloomingtonUSA

Personalised recommendations