Inventiones mathematicae

, Volume 196, Issue 3, pp 651–732 | Cite as

L-functions and theta correspondence for classical groups

  • Shunsuke Yamana


Using the doubling method of Piatetski-Shapiro and Rallis, we develop a theory of local factors of representations of classical groups and apply it to give a necessary and sufficient condition for nonvanishing of global theta liftings in terms of analytic properties of the L-functions and local theta correspondence.



We acknowledge the deep influence of the works of Rallis and his collaborators. We thank Stephen Kudla for suggesting the author to prove Proposition 7.1, Atsushi Ichino for his encouragement throughout this project and Binyong Sun and Chen-Bo Zhu for sending us their preprint [55]. A large portion of Sects. 5 and 10 is an outgrowth of discussion with Wee Teck Gan, to whom we are most thankful. This paper was partly written during my stay at the National University of Singapore. We would like to thank the people in NUS for the warm hospitality. The author is partially supported by JSPS Grant-in-Aid for Research Activity Start-up 24840033. This work is partially supported by the JSPS Institutional Program for Young Researcher Overseas Visits “Promoting international young researchers in mathematics and mathematical sciences led by OCAMI”. The anonymous referee deserves special thanks for a very careful reading that led to substantial improvements and clarifications.


  1. 1.
    Adams, J., Barbasch, D.: Genuine representations of the metaplectic group. Compos. Math. 113, 23–66 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. Preprint Google Scholar
  3. 3.
    Casselman, W., Hecht, H., Miličić, D.: Bruhat filtrations and Whittaker vectors for real groups. In: The Mathematical Legacy of Harish-Chandra, Baltimore, MD, 1998, pp. 151–190. Am. Math. Soc., Providence (2000) CrossRefGoogle Scholar
  4. 4.
    Gan, W.T.: Doubling zeta integrals and local factors for metaplectic groups. Nagoya Math. J. 208, 67–95 (2012) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Gan, W.T., Ichino, A.: Formal degree and theta correspondence. Invent. Math. (2013). doi: 10.1007/s00222-013-0460-5 Google Scholar
  6. 6.
    Gan, W.T., Qiu, Y., Takeda, S.: The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula. Preprint Google Scholar
  7. 7.
    Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148, 1655–1694 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gan, W.T., Takeda, S.: The regularized Siegel-Weil formula: the second term identity and non-vanishing of theta lifts from orthogonal groups. J. Reine Angew. Math. 659, 175–244 (2011) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Ginzburg, D., Jiang, D., Soudry, D.: Poles of L-functions and theta liftings for orthogonal groups. J. Inst. Math. Jussieu 8, 693–741 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ginzburg, D., Rallis, S., Soudry, D.: The Descent Map from Automorphic Representations of GL(n) to Classical Groups. World Scientific, Hackensack (2011). x+339 pp. CrossRefzbMATHGoogle Scholar
  11. 11.
    Godement, R., Jacquet, H.: Zeta Functions of Simple Algebras. Lecture Notes in Math., vol. 260. Springer, Berlin (1972) zbMATHGoogle Scholar
  12. 12.
    Gong, Z., Grenié, L.: An inequality for local unitary theta correspondence. Ann. Fac. Sci. Toulouse 20, 167–202 (2011) CrossRefzbMATHGoogle Scholar
  13. 13.
    Harris, M., Kudla, S., Sweet, W.J. Jr.: Theta dichotomy for unitary groups. J. Am. Math. Soc. 9, 941–1004 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Harris, M., Li, J.-S., Sun, B.: Theta correspondence for close unitary groups. In: Arithmetic Geometry and Automorphic Forms. Adv. Lect. Math., vol. 19, pp. 265–307. International Press, Somerville (2011) Google Scholar
  15. 15.
    Howe, R.: Transcending classical invariant theory. J. Am. Math. Soc. 2, 535–552 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ikeda, T.: On the location of poles of the triple L-functions. Compos. Math. 83, 187–237 (1992) zbMATHGoogle Scholar
  17. 17.
    Ikeda, T.: On the residue of the Eisenstein series and the Siegel-Weil formula. Compos. Math. 103, 183–218 (1996) zbMATHGoogle Scholar
  18. 18.
    Ikeda, T.: On the gamma factor of the triple L-function II. J. Reine Angew. Math. 499, 199–223 (1998) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Jacquet, H.: Principal L-functions of the linear group. In: Automorphic Forms, Representations, and L-Functions. Proc. Symp. Pure Math., vol. 33, part II, pp. 63–86. Am. Math. Soc., Providence (1979) CrossRefGoogle Scholar
  20. 20.
    Karel, M.: Functional equations of Whittaker functions on p-adic groups. Am. J. Math. 101, 1303–1325 (1979) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Knapp, A.W.: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton (1986) zbMATHGoogle Scholar
  22. 22.
    Kudla, S.: On the local theta-correspondence. Invent. Math. 83, 229–255 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kudla, S.: Splitting metaplectic covers of dual reductive pairs. Isr. J. Math. 84, 361–401 (1994) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Kudla, S.: Integrals of Borcherds forms. Compos. Math. 137, 293–349 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kudla, S., Rallis, S.: Degenerate principal series and invariant distributions. Isr. J. Math. 69, 25–45 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kudla, S., Rallis, S.: Poles of Eisenstein series and L-functions. In: Festschrift in Honor of I.I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II. Israel Math. Conf. Proc., vol. 3, pp. 81–110. Weizmann, Jerusalem (1990) Google Scholar
  27. 27.
    Kudla, S., Rallis, S.: Ramified degenerate principal series representations for Sp(n). Isr. J. Math. 78, 209–256 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Kudla, S., Rallis, S.: A regularized Siegel-Weil formula: the first term identity. Ann. Math. 140, 1–80 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Kudla, S., Rallis, S.: On first occurrence in local theta correspondence. In: Automorphic Representations, L-Functions and Applications: Progress and Prospects, pp. 273–308. de Gruyter, Berlin (2005) Google Scholar
  30. 30.
    Kudla, S., Sweet, W.J. Jr.: Degenerate principal series representations for U(n,n). Isr. J. Math. 98, 253–306 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lapid, E., Rallis, S.: On the nonnegativity of \(L (\frac{1}{2},\pi)\) for SO 2n+1. Ann. Math. 157, 891–917 (2003) zbMATHMathSciNetGoogle Scholar
  32. 32.
    Lapid, E., Rallis, S.: On the local factors of representations of classical groups. In: Automorphic Representations, L-Functions and Applications: Progress and Prospects, pp. 309–359. de Gruyter, Berlin (2005) Google Scholar
  33. 33.
    Li, J.-S.: Singular unitary representations of classical groups. Invent. Math. 97, 237–255 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Li, J.-S.: Non-vanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math. 428, 177–217 (1992) zbMATHMathSciNetGoogle Scholar
  35. 35.
    Li, J.-S., Paul, A., Tan, E.-C., Zhu, C.-B.: The explicit duality correspondence of (Sp(p,q),O (2n)). J. Funct. Anal. 200, 71–100 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Moeglin, C.: Non nullité de certains relêvements par séries théta. J. Lie Theory 7, 201–229 (1997) zbMATHMathSciNetGoogle Scholar
  37. 37.
    Moeglin, C., Vigneras, M.-F., Waldspurger, C.-L.: Correspondence de Howe sur un corps p-adique. Lecture Notes in Math., vol. 1291 (1987) Google Scholar
  38. 38.
    Moeglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series. Cambridge University Press, Cambridge (1995) CrossRefzbMATHGoogle Scholar
  39. 39.
    Paul, A.: Howe correspondence for real unitary groups. J. Funct. Anal. 159, 384–431 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Paul, A.: First occurrence for the dual pairs (U(p,q),U(r,s)). Can. J. Math. 51(3), 636–657 (1999) CrossRefzbMATHGoogle Scholar
  41. 41.
    Paul, A.: On the Howe correspondence for symplectic-orthogonal dual pairs. J. Funct. Anal. 228, 270–310 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Piatetski-Shapiro, I.: On the Saito Kurokawa lifting. Invent. Math. 71, 309–338 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Piatetski-Shapiro, I., Rallis, S.: ε factor of representations of classical groups. Proc. Natl. Acad. Sci. USA 83, 4589–4593 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Piatetski-Shapiro, I., Rallis, S.: L-functions for classical groups. In: Lecture Notes in Math., vol. 1254, pp. 1–52 (1987) Google Scholar
  45. 45.
    Piatetski-Shapiro, I., Rallis, S.: Rankin triple L-functions. Compos. Math. 64, 31–115 (1987) zbMATHMathSciNetGoogle Scholar
  46. 46.
    Ranga Rao, R.: On some explicit formulas in the theory of Well representation. Pac. J. Math. 157, 335–371 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Rallis, S.: On the Howe duality conjecture. Compos. Math. 51, 333–399 (1984) zbMATHMathSciNetGoogle Scholar
  48. 48.
    Rallis, S.: L-Functions and the Oscillator Representation. Lecture Notes in Math., vol. 1245 (1987) zbMATHGoogle Scholar
  49. 49.
    Roberts, B.: Nonvanishing of global theta lifts from orthogonal groups. J. Ramanujan Math. Soc. 14, 131–194 (1999) zbMATHMathSciNetGoogle Scholar
  50. 50.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) zbMATHGoogle Scholar
  51. 51.
    Scharlau, W.: Quadratic and Hermitian Forms. Springer, Berlin (1985) CrossRefzbMATHGoogle Scholar
  52. 52.
    Shimura, G.: Euler Products and Eisenstein Series. CBMS Reg. Conf. Ser. Math., vol. 93. Am. Math. Soc., Providence (1997) zbMATHGoogle Scholar
  53. 53.
    Shimura, G.: Arithmeticity in the Theory of Automorphic Forms. Math. Surveys Monogr., vol. 82. Am. Math. Soc., Providence (2000) zbMATHGoogle Scholar
  54. 54.
    Shimura, G.: Arithmetic of Quadratic Forms. Springer, Berlin (2010) CrossRefzbMATHGoogle Scholar
  55. 55.
    Sun, B., Zhu, C.-B.: Conservation relations for local theta correspondence. Preprint Google Scholar
  56. 56.
    Sweet, W.J. Jr.: A computation of the gamma matrix of a family of p-adic zeta integrals. J. Number Theory 55, 222–260 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Sweet, W.J. Jr.: Functional equations of p-adic zeta integrals and representations of the metaplectic group. Preprint (1995) Google Scholar
  58. 58.
    Takeda, S.: Some local-global non-vanishing results for theta lifts for symplectic-orthogonal dual pairs. J. Reine Angew. Math. 657, 81–111 (2011) zbMATHMathSciNetGoogle Scholar
  59. 59.
    Tan, V.: Poles of Siegel Eisenstein series on U(n,n). Can. J. Math. 51, 164–175 (1999) CrossRefzbMATHGoogle Scholar
  60. 60.
    Waldspurger, J.-L.: Correspondance de Shimura. J. Math. Pures Appl. 59, 1–132 (1980) zbMATHMathSciNetGoogle Scholar
  61. 61.
    Waldspurger, J.-L.: Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p≠2. In: Festschrift in Honor of I.I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part I. Israel Math. Conf. Proc., vol. 2, pp. 267–324. Weizmann, Jerusalem (1990) Google Scholar
  62. 62.
    Waldspurger, J.-L.: Correspondances de Shimura et quaternions. Forum Math. 3, 219–307 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Waldspurger, J.-L.: La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2(2), 235–333 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Wallach, N.: Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals. In: Representations of Lie Groups. Adv. Stud. Pure Math., vol. 14, pp. 123–151. North-Holland, Amsterdam (1988) Google Scholar
  65. 65.
    Wallach, N.: Real Reductive Groups. II. Pure and Applied Mathematics, vol. 132. Academic Press, Boston (1992) zbMATHGoogle Scholar
  66. 66.
    Weil, A.: Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math. 113, 1–87 (1965) CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Yamana, S.: Degenerate principal series representations for quaternionic unitary groups. Isr. J. Math. 185, 77–124 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Yamana, S.: On the Siegel-Weil formula: The case of singular forms. Compos. Math. 147, 1003–1021 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Yamana, S.: On the Siegel-Weil formula for quaternionic unitary groups. Am. J. Math., in press Google Scholar
  70. 70.
    Yamana, S.: The Siegel-Weil formula for unitary groups. Pac. J. Math. 264(1), 235–256 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Zorn, C.: Theta dichotomy and doubling epsilon factors for Sp n(F). Am. J. Math. 133, 1313–1364 (2011) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of MathematicsKyushu UniversityNishi-kuJapan

Personalised recommendations